ANEXO A. ESTADO DEL ARTE

No.	AUTOR	TITULO	AÑO	EDITORIAL	Resumen
1	Abbas Mohajerani	Physico mechanical properties of asphalt concrete incorporated with encapsulated cigarette butts	2017	ELSEVIER Construction and Building Materials	Se realizó una mezcla asfáltica con colillas de cigarrillo recubriéndolas con diferentes tipos de betunes y parafina, dichas colillas no se clasificaron ni se les realizo una limpieza previa a la mezcla; las colillas que presentaron un mejor resultado fueron las que estaban con un asfalto de clase más alta y mejoraba la resistencia y flexibilidad. Además, estas soportan mayor carga que las de parafina; para la parafina se demostró que reduce el espacio de vacíos.
2	Gonzalo Sanz- Díez de Ulzurrun Casalsa, Carlos Zanuy Sánchez	Caracterizació n de comportamient o en flexión del hormigón reforzado Con fibras sometido a impacto	2017	ScienceDirect- ELSEIER Hormigón y acero	La realización del adicionamiento de fibras que para este caso son fibras de metálicas a cilindro de concreto tiene como fin verificar la resistencia a la flexión que puede tener con esta adición a diferencia de una mezcla convencional, la adición se presentó en dos cantidades que fueron de 1% de la mezcla y 0,5%, las cuales se buscó ubicarlas de forma recta, de forma longitudinal a la probeta y la otra anclada en sus extremos. Se concluyó que efectivamente las fibras presentan mejoramiento en las probetas sometidas a flexión, pero más que esto las fibras adicionadas de manera longitudinal recta presentan mejores resultados que las ancladas, debido a que estas generan un espacio que al momento de realizarle la prueba y los análisis las ancladas desboronan la probeta, a diferencia que las rectan hacen que falle de manera homogénea.
3	María Betania d'Heni Teixeira, Marco Antônio B. Duarte	Process development for cigarette bu tts recycling into cellulose pulp	2017	Research article Waste Management	Una de las mejores maneras para combatir la contaminación ambiental es buscando la manera de reutilizar lo que muchos consideran no reutilizable, y esto es lo que se está haciendo con las colillas de cigarrillo siendo un material tan difícil de reutilizar, pero a la vez tan contaminante puesto que en él se encuentra una diversidad de químicos que alteran el medio en el que se encuentra. La universidad de Brasilia tomo la decisión de buscar una manera de utilizar las colillas de cigarrillo y que ellos afirman que muchas cosas pueden salir de este residuo, solo se necesita recolectarlas y un poco de ciencia para así convertirlas en un artículo u objeto utilizable de la mejor manera, este es el cambio que se le quiere dar al mundo y a la naturaleza siendo esta la más afectada por este residuo.
4	Rafael Alfonso Luna Martínez	Procesado de filtros de cigarrillo para la construcción de paneles divisorios	2015	Instituto Politécnico Nacional	Las fibras de celulosa sometidas a una fuerza de tracción contemplan una gran resistencia. En este artículo se realiza un ensayo en el cual se colocan las colillas de cigarrillo apilando unas con otras y de esta manera genera una mayor resistencia a presión como a tracción. Las fibras de celulosa dan resistencia y flexibilidad; se habla de cómo está constituida una colilla de cigarrillo las cuales son fibras que para este caso se utilizaron con el fin de ayudar a disminuir las ondas de sonido en un espacio, se les realizo un tratado a los filtros con un proceso de limpieza y luego un proceso de trituración por medio de una licuadora casera agregándole pequeños contenidos de agua hasta crear una masa, a lo que conllevo

					no muy buenos resultados con respecto a la uniformidad que se esperaba, de esta manera se buscó triturar en otra licuadora pero con mayor potencia y allí si se obtuvo uno mezcla homogénea. Uno de los contras en esta investigación fue el problema en la limpieza de las colillas
5	Presenta Juan Lorenzo Barajas Pérez Asesor Arq. Ramón Aviña Iglesias. Revisores Dra. Arq. Dora Angélica Correa Fuentes. M. A. Arq. José Fidel Navarro Arellano	Elaboración Y Evaluación De Piezas De Tabicón Con Cal Hidratada A Una Calidad No Menor Al 80% De Hidróxido De Calcio, En Sustitución Del Cemento Portland Tipo 1	2014	Instituto tecnológico de colima- México- Tesis	La elaboración de tabicones en el ámbito constructivo ha sido utilizada de manera constante por su buen comportamiento en resistencia, para este caso se buscó hacer tabicones sustituyendo de manera variable el cemento portland tipo uno, los porcentajes de cal que se iban a incluir en la mezcla fueron 5, 10, 15, 20,25 porciento, además se someter los tabicones a los 4, 7, 28 días después de realizada la mezcla. La mezcla que presento mejores resultados fueron la de 5% de cal en un tabicón que se dejó reposar durante 7 días, siendo estos los primeros en donde el concreto alcanza su primer resistencia, con esto se demuestra que la cal utilizándose como un sustituyente puede presentar mejoras en materiales constructivos que para este caso fue el tabicón, no obstante los resultados aunque no cumplieron con la normativa para muros de carga, cumplieron para muros divisorios, debido a la resistencia a temprana edad que presenta y a las propiedades que da la cal como son baja humedad, menor espacio entre partículas y mayor cubrimiento del material.
6	A. Behnood - M. Ameri	Experimental investigation of stone matrix asphalt mixtures containing steel slag	2012	Scientia Iranica A sharif uiversity of technology	Se realizaron tres tipos de pruebas para ser sometidas al laboratorio Marshall, para esto la primer prueba contiene como agregado grueso piedra caliza, para la segunda piedra caliza con escoria de acero, y para la última se tomó piedra caliza y escoria de acero, se sometieron a pruebas como lo es resistencia a la tracción, a la compresión, prueba de fluencia, prueba de resiliencia, esto con el fin de crear una base para pavimento que pudiera soportar grandes cargas sin deformarse y tuviera resistencia continua a largo plazo, al momento de ver los resultados se pudo observar que entre las tres pruebas tratadas la que mejor índice Marshall mostro fue la muestra de piedra caliza con escoria de acero, a diferencia de las otras dos, esta presento grandes índices de sometimiento a grandes cargas, así como una estabilidad frente a los esfuerzos, por lo tanto se catalogaron las muestras en forma de mayores propiedades hasta la de menor, con lo cual en la numero uno se tiene a la muestra de piedra caliza con agregado de escoria de acero, en el segundo lugar la muestra de escoria de acero y por último la muestra con contenido de piedra caliza.
7	José Carlos Monzonis Marco director: Juan Andrés González Romero	Estudio para la minimización del residuo de colillas de tabaco y su posible reutilización	2011	Universidad Politécnica De Valencia Escuela Superior De Gandia.	Explica la composición química de una colilla de cigarrillo, además de su impacto ambiental. Una de los índices que se detectaron es que los filtros de acetato de celulosa presentan abundante materia orgánica en ellos además de que estipula que una mayor superficie de contacto proporcionada por el corte de los filtros implicaba una mayor capacidad de retención de zinc; las fibras de celulosa son capaces de retener ciertas cantidades de zinc siempre y cuando la concentración inicial de éste sea apropiada para la cantidad de acetato de celulosa utilizado como adsorbente, esta cantidad absorbida se va soltando poco a poco.

8	ANCADE (Asociación Nacional de Cales y Derivados de España)	Aplicaciones Por Producto		ANCADE (Asociación Nacional de Cales y Derivados de España)	Son las diferentes aplicaciones que se le puede dar a la Cal en la construcción tanto en infraestructura como en edificación; la Cal estabiliza y mejora las propiedades de los suelos arcillosos y de mezclas en caliente con el fin de aumentar la durabilidad.
9	ANCADE (Asociación Nacional de Cales y Derivados de España)	Cal hidratada Un aditivo probado para la durabilidad de los pavimentos asfálticos		EULA (European Lime Association)	Principales desgastes de las carreteras, Durante más de 50 años ha generado el idea de la búsqueda de asfalto modificados y entre ellos está el modificado con cal, se ha demostrado que la cal hidratada es la referencia mundial de los modificadores de asfalto para mitigar el daño de la humedad, la cal se considera un modificador multifuncional del asfalto para ampliar la vida del pavimentos, la cal hidratada reduce el índice de envejecimiento del pavimento del asfalto retardando la oxidación de muchos tipos de asfalto. Esto es debido a que la cal reacciona con las moléculas altamente polares del asfalto, retardando el índice de cambio de la química del asfalto. Por lo tanto, el pavimento sigue siendo más flexible a lo largo del tiempo, y se protege del agrietamiento frágil durante más años que sin la contribución de la cal; hay tres métodos para incorporar la cal; método de tambor, cal seca en el método árido húmedo y la lechada de cal; se Usa en EEUU y Europa y da múltiples ventajas a las mezclas en caliente, frio y el reciclaje in-situ.
10	Alexa Guevara Lizano	Sistema para El Adecuado Desecho de Colillas de Cigarrillo	2010	Instituto Tecnológico de Costa Rica	Los filtros del cigarrillo varían su eficiencia dependiendo si es un filtro light o regular, son acetatos de celulosa plástico; en el artículo se da a conocer los diferentes componentes físicos y químicos del cigarrillo; las colillas de cigarrillo sirven como pesticida industrial o caseros; Roberto Chaves propuso un método de limpieza.
11	Huaxin Chen, Qinwu Xu	Experimental study of fibres in stabilizing and reinforcing asphalt binder	2010	Elsevier, Fuel	Los experimentos de laboratorio fueron diseñados para estudiar el físico de las fibras (dos poliésteres, uno de poliacrilonitrilo y uno de lignina y un asbesto) propiedades, efectos de refuerzo y mecanismos en el aglutinante de asfalto. Las fibras han mejorado significativamente la dinámica del aglutinante de asfalto módulo de cizalladura, resistencia a la formación de surcos y resistencia al flujo. Las fibras pueden reforzar la carpeta de asfalto a través de sus funciones de red espacial, absorción y adherencia de asfalto, y los efectos de refuerzo también dependen de las estructuras de fibra y propiedades que incluyen su forma, tamaño y resistencia a la tracción; Las fibras de lignina y asbesto muestran una mayor absorción de asfalto, función que las fibras de polímero debido a su mayor áreas superficiales específicas no logran, Las fibras de poliéster y poliacrilonitrilo muestran tener mayor función de red que la lignina y las fibras de amianto.
12	Sayyed Mahdi Abtahi, Mohammas	Fibre- reinforced asphalt-	2010	Elsevier, Construction	Existen dos métodos para la incorporación de fibras en la mezcla asfáltica una se realiza con las fibras húmedas y la otra

	Sheikhzadeh, Sayyed Mahdi Hejazi	concrete-A review		and Building Materials	con las fibras secas, la primera se mezcla las fibras húmedas con el cemento asfaltico antes de ser aplicado a la mezcla, el proceso seco se mezcla las fibras con el agregado antes de la adición del asfalto, generalmente se realiza el proceso seco por la mayor facilidad de distribución de fibras en la mezcla, en cambio las fibras en húmedo puede generar grumos entre ellas y burbujas a la mezcla, por este motivo se recomienda utilizar la mezcla de fibras en seco. En el sur de california en los años 60 se realizó capas tejidas de algodón las cuales se extendieron entre las capas de asfalto esto con el fin de reforzar la superficie de la carretera y mejorar el confort del viaje. El adicionamiento de fibras desarrolla una mezcla que presenta alta resistencia a la humedad, envejecimiento, la fatiga y el agrietamiento.
13	Juan Coreño- Alonso y María Teresa Méndez- Bautista*	Relación estructura- propiedades de polímeros	2010	Universidad Nacional Autónoma de México	Los polímeros como uno de los principales modificadores de mezcla asfálticas tienen como fin buscar la manera de diseñar materiales netamente polímeros con el fin de darles una aplicación con requerimientos de desempeño altos, además se conocer específicamente su estructura y composición para así mismo determinar la mejor manera de aplicación.
14	Written By: Dallas N. Little and Jon A. Epps 2001 Updated By: Peter E. Sebaaly 2006	the benefits of Hydrated Lime in Hot Mix Asphalt	2006	Prepared for the National Lime Association	Los beneficios de la cal hidratada en mezclas asfálticas generalmente son: Actúa como relleno mineral para endurecer. La carpeta de asfalto, además de que Mejora la resistencia a la fractura, mejora la tenacidad de la carpeta, resiste bajas temperaturas. Altera favorablemente la cinética de oxidación he interactúa con productos de oxidación para reducir sus efectos nocivos, endurece la película de asfalto y la refuerza. En una investigación que se realizó en los estados unidos se obtuvieron resultados con referencia a la adición de cal hidratada a una mezcla asfáltica la cual tuvo como expectativa indicando que la adición de cal hidratada Aumenta la rigidez. Esta ayuda a distribuir además de reducir las tensiones y deformaciones en la estructura del pavimento Creado por cargas de tráfico y en general reduce la deformación permanente potencial.
15	Bradley J. Putman - Serji N. Amirkhanian	Utilization of waste fibers in stone matrix asphalt mixtures	2004	Elsevier- Resources, Conservation and Recycling	Las fibras de celulosa tienen un contenido alto de absorción con un efecto estabilizador, que puede atribuirse a la naturaleza de absorción que tiene la celulosa en comparación a las fibras sintéticas de poliéster. El análisis de los resultados de tenacidad de las muestras secas y húmedas de una mezcla asfáltica indicó que la mezcla que contiene las fibras de celulosa tiene valores de dureza significativamente menores que las de neumático, alfombras y fibras de poliéster. Esto muestra que las fibras de poliéster, neumático y alfombra tienen una mejor capacidad para las grietas que se han desarrollado dentro de la mezcla durante la aplicación de carga así aumentando la tenacidad de la mezcla. Esto también podría indicar que hay un vínculo más fuerte entre las fibras de poliéster y el aglutinante de asfalto que existe con las fibras de celulosa. Las relaciones de resistencia a la tracción para las mezclas que contienen el neumático y las fibras de la alfombra fueron mayores que la de celulosa, del 94 % más del 100% (100.9 y 101.8%, respectivamente). Esto indica que estas

					fibras no causan que la mezcla se debilite cuando se expone a la humedad.
16	Dr. M. W. Witczak Professor of Civil Engineering Javed Bari Graduate Research Associate	Development of A Master Curve (E*) Database For Lime Modified Asphaltic Mixtures Arizona State University Research Project	2004	Ira A. Fulton School of Engineering Department of Civil and Environmental Engineering Tempe,	Beneficios de la cal se han demostrado mediante pruebas de laboratorio estándar, tales como el ensayo de tracción indirecta y prueba de deformación permanente carga repetida en compresión uniaxial. El Pavimento Asfáltico Analyzer (APA) y del probador de ruedas Hamburg Cargado también se han utilizado por varias agencias para mostrar las características de rendimiento mejorado de las mezclas modificadas con cal en la resistencia a la formación de surcos en el laboratorio. La cal hidratada menudo se utiliza como un material de carga mineral o aditivo antistripping en caliente de mezcla de asfalto (HMA). De hecho, muchas agencias a través de América del Norte requieren el uso de cal hidratada en todas las mezclas HMA ser Colocados en las carreteras de gran volumen. Muchos estudios han demostrado que las mezclas de HMA con cal tienen una vida de Servicio más largos y menores cantidades de ahuellamiento y agrietamiento en comparación con mezclas de HMA no modificados.
17	Joel H Beeghly	Recent experiences with lime – fly ash stablization of pavement subgrade soils base, and recycled asphalt	2003	Centro de Investigación Energética	La cal se utiliza como un estabilizador de suelos arcillosos de alta plasticidad así como para suelos limosos, para este caso se buscó utilizar la cal para estabilizar la sub base y base de un pavimento ya sea rígido o flexible, el objetivo está en mezclar la cal con el agregado de la sub base o base en estado natural, para el caso de la cal que sea hidratada y para el caso de los materiales granulares que estén fuera de cualquier humedad, esto con el fin de que una vez se mezcle la cal con los agregado se humedezcan a la ves y alcancen la proporción de agua suficiente para que haya compatibilidad, por otro lado está la mezcla de cal con ceniza volante tipo, esta mezcla se hace con el fin de estabilizar suelos arcillosos con un pH menor a 10, más susceptibles, además de estabilizar una capa de subbase, a diferencia de estabilizarla solo con cal, existe mayor resistencia en la capa mezclada con cal y ceniza volante, así como otorga mayor resistencia a la comprensión disminuye los costos a la hora de estipular un espesor a la carpeta asfáltica o mezcla de concreto.

ANEXO B. RESULTADOS DE LABORATORIO

B.1. PRUEBA A LOS MATERIALES PETREOS

B.1.1. Secado de material

En la siguiente tabla se presentan los intervalos de tiempo en los cuales el material pétreo fue trabajado con el fin de generar el secado natural. El objetivo fue extender el Material para secarlo al sol durante dos horas a una temperatura ambiente de 25 grados centígrados.

Tabla 1. Intervalos de tiempo para la prueba del secado de material.

Material	Registro de Horas								
Material	Extendido	Movida 1	Movida 2	Movida 3	Recogido				
Grava triturada	10:21 a. m.	10:21 a. m.	11:21 a. m.	11:41 a. m.	12:04 p. m.				
Sello triturado	10:27 a. m.	11:07 a. m.	11:27 a. m.	11:47 a. m.	12:10 p. m.				
Arena triturada	10:36 a. m.	11:16 a. m.	11:36 a. m.	11:56 a. m.	12:20 p. m.				

Fuente: Propia

B.1.2. Peso volumétrico (ASTM C 29/29M-97)

En las siguientes tablas se presentan los valores obtenido en laboratorio para los distintos materiales pétreos en la prueba de peso volumétrico seco suelto y la de peso volumétricos seco y varillado.

Tabla 2. Resultados de la prueba peso volumétrico seco y suelto en grava triturada.

	Densidad Mínima Grava triturada									
No. Muestra	Peso Material (d)									
1	2905	10800	18650	15745	1,4579					
2	2905	10800	18100	15195	1,4069					
		Prome	dio		1,4324					

Tabla 3. Resultados de la prueba peso volumétrico seco y suelto en sello triturado.

	Densidad Mínima									
	Sello triturado									
No.	Peso Tara	Volumen Tara	Peso Material + Tara	Peso Material	Densidad					
Muestra	(g)	(cm³)	(g)	(g)	mínima					
1	1842	2850	6130	4288	1,5046					
2	1842	2850	6058	4216	1,4793					
3	1842	2850	6090	4248	1,4905					
		Prome	dio		1,4915					

Tabla 4. Resultados de la prueba peso volumétrico seco y suelto en arena triturada.

	Densidad Mínima								
		A	rena triturada						
No. Muestra									
1	1842	2850	6258	4416	1,5495				
2	1842	2850	6490	4648	1,6309				
3	1842	2850	6488	4646	1,6302				
	Promedio								

Fuente: Propia

Tabla 5. Resultados de la prueba peso volumétrico seco y suelto en arena volcánica.

1010011110011									
	Densidad Mínima								
		Aı	rena volcánica						
No.	Peso Tara	Volumen Tara	Peso Material + Tara	Peso Material (g)	Densidad				
Muestra	(g)	(cm³)	(g)	reso Material (g)	mínima				
1	1842	2850	5860	4018	1,4098				
2	1842	2850	5870	4028	1,4133				
	Promedio 1,4								

Fuente: Propia

Tabla 6. Resultados de la prueba peso volumétrico seco y varillado en grava triturada.

	Densidad máxima (25 Golpes)									
	Grava Triturada									
No. Muestras	No. Muestras Peso Tara (g) Volumen Tara (cm³) Peso Material + Tara (g) Peso Material (g)									
1	2905	10800	19300	16395	1,5181					
2	2905	10800	19300	16395	1,5181					
	Promedio									

Tabla 7. Resultados de la prueba peso volumétrico seco y varillado en sello triturado.

	Densidad máxima (25 Golpes)										
	Sello Triturado										
No. Muestras	Densidad Max (g/cm³)										
1	1842	2850	6300	4458	1,5642						
2	1842	2850	6230	4388	1,5396						
3	1842	2850	6260	4418	1,5502						
	Promedio										

Tabla 8. Resultados de la prueba peso volumétrico seco y varillado en arena triturada.

tirtoi ottoti						
Densidad máxima (25 Golpes)						
	Arenas Triturada					
No. Muestras	No. Muestras Peso Tara (g) Volumen Tara (cm³) Peso Material + Tara (g) Peso Material (g) Der					
1	1842	2850	6730	4888	1,7151	
2	1842	2850	6820	4978	1,7467	
3	1842	2850	6900	5058	1,7747	
Promedio					1,7455	

Fuente: Propia

Tabla 9. Resultados de la prueba peso volumétrico seco y varillado en arena volcánica.

	Densidad máxima (25 Golpes)					
	Arena Volcánica					
No. Muestras	Peso Tara (g)	Volumen Tara (cm³)	Peso Material + Tara (g)	Peso Material (g)	Densidad Max (g/cm³)	
1	1842	2850	6120	4278	1,5011	
2	1842	2850	6165	4323	1,5168	
3	1842	2850	6150	4308	1,5116	
	Promedio				1,5098	

Fuente: Propia

B.1.3. Granulometría (ASTM C 136-01)

Las tablas que se presentan a continuación contienen los valores obtenidos en laboratorio para el ensayo de granulometría en los materiales pétreos como lo son, grava sello y arena triturada, además de arena volcánica.

Tabla 10. Resultados de la prueba de granulometría en grava triturada.

Grava Triturada					
Malla	Material Retenido (g)	% Retenido	% Acumulado	% Que Pasa	
2"	0,00	0,00	0,00	100,00	
1 1/2"	0,00	0,00	0,00	100,00	
1 1/4"	0,00	0,00	0,00	100,00	
1"	0,00	0,00	0,00	100,00	
3/4"	1020,00	6,23	6,23	93,77	
1/2"	8650,00	52,84	59,07	40,93	
3/8"	6110,00	37,32	96,40	3,60	
1/4"	540,00	3,30	99,69	0,31	
No.4	20,00	0,12	99,82	0,18	
Pasa No.4	30,00	0,18	100,00	0,00	
SUMAS	16370,00	100,00			

Tabla 11. Resultados de la prueba de granulometría en sello triturado.

Sello Triturado						
Malla	Material Retenido (g)	% Retenido	% Acumulado	% Que Pasa		
1/2"	0,00	0,00	0,00	100,00		
3/8"	936,00	24,61	24,61	75,39		
1/4"	2349,00	61,77	86,38	13,62		
No.4	378,00	9,94	96,32	3,68		
Pasa No.4	140,00	3,68	100,00	0,00		
SUMAS	3803,00	100,00				

Tabla 12. Resultados de la prueba de granulometría en arena triturada.

Arena Triturada					
Malla	Material Retenido (gr)	% Retenido	% Acumulado	% Que Pasa	
No.10	326	50,00	50,00	50,00	
No.20	177	27,15	77,15	22,85	
No.40	51	7,82	84,97	15,03	
No.60	18	2,76	87,73	12,27	
No.100	16	2,45	90,18	9,82	
No.200	17	2,61	92,79	7,21	
Fondo	47	7,21	100,00	0,00	
SUMAS	652,00	100,00			

Tabla 13. Resultados de la prueba de granulometría en arena volcánica.

Arena Volcánica					
Malla	Material Retenido (g)	% Retenido	% Acumulado	% Que Pasa	
No.10	317	8,11	8,11	91,89	
No.20	1436	36,75	44,86	55,14	
No.40	1294	33,11	77,97	22,03	
No.60	336	8,60	86,57	13,43	
No.100	210	5,37	91,94	8,06	
No.200	108	2,76	94,70	5,30	
Fondo	207	5,30	100,00	0,00	
SUMAS	3908,00	100,00			

B.1.4. Densidad (ASTM C 127-01) (ASTM C 128-01)

Por medio de las siguientes tablas se da a conocer los valores obtenidos mediante el ensayo de densidad en los materiales gruesos y finos como lo son, grava, sello y arena triturada al igual que para arena volcánica.

Tabla 14. Resultados de la prueba de densidad para grava triturada.

Densidad de Grava	Unid	
Peso GH Muestra 1	300,3	g
Peso GH Muestra 1	300,8	g
Vol. Des Muestra 1	124	ml
Vol. Des Muestra 2	125	ml
Densidad de la Grava	2,414	gr/cm3

Tabla 15. Resultados de la prueba de densidad para sello triturado.

Densidad de sell	Unid	
Peso SH	300	g
Vol. Des	110	cm3
Densidad del sello	2,727	gr/cm3

Fuente: Propia

Tabla 16. Resultados de la prueba de densidad para arena triturada.

Densidad de Arena Triturada				
Volumen Frasco	450	ml		
Peso del frasco	324,8	g		
cant. Agregado	350	g		
Peso frasco + material + agua Prueba 1	989,2	g		
Peso frasco + material + agua Prueba 2	989,3	g		
Peso frasco + material + agua Promedio	989,25	g		
Densidad (g/ml)	2,582			

Fuente: Propia

Tabla 17. Resultados de la prueba de densidad para arena volcánica.

Densidad de Arena Volcánica				
Volumen Frasco	450	ml		
Peso del frasco	324,8	g		
cant. Agregado	350	g		
Peso frasco + material + agua Prueba 1	978,3	g		
Peso frasco + material + agua Prueba 2	978,1	g		
Peso frasco + material + agua Promedio	978,2	g		
Densidad (g/ml)	2,387			

B.1.5. Absorción (ASTM C 127-01) (ASTM C 128-01)

Mediante las siguientes tablas se presentan cada uno de los valores para los diferentes tipos de materiales a los que se le realizo prueba de absorción.

Tabla 18. Resultados de la prueba de absorción en grava triturada.

Absorción de Grava				
Peso Húmedo de la Muestra 1	300,3	g		
Peso Húmedo de la Muestra 2	299,4	g		
Peso Seco de la grava Muestra 1	297,7	g		
Peso Seco de la Grava Muestra 2	296,7	g		
Peso Húmedo de la Grava Promedio	299,85	g		
Peso Seco de la Grava Promedio	298,275	g		
Absorción de Grava (%)	0,5280			

Fuente: Propia

Tabla 19. Resultados de la prueba de absorción en sello triturado.

Absorción de sello	Unid	
Peso S Húmedo	300	g
Peso Seco	294	g
Absorción de sello (%)	2,04	

Fuente: Propia

Tabla 20. Resultados de la prueba de absorción en arena triturada.

Absorción de Arenas Triturada						
Peso Húmedo de la Muestra	350	g				
Peso Seco de la Arena Muestra 1	332,2	g				
Peso Seco de la Arena Muestra 2	332,4	g				
Peso Seco de la Arena Promedio	332,3	g				
Absorción de Arenas (%)	5,33					

Fuente: Propia

Tabla 21. Resultados de la prueba de absorción en arena volcánica.

Absorción de Arenas Volcánica						
Peso Húmedo de la Muestra	350	g				
Peso Seco de la Arena Muestra 1	337,7	g				
Peso Seco de la Arena Muestra 2	338,2	g				
Peso Seco de la Arena Promedio	337,95	g				
Absorción de Arena volcánica (%)	3,57					

Fuente: Propia

B.1.6. Equivalente de arena (ASTM D 2419-09)

Para la prueba equivalente de arena los valores obtenidos mediante el ensayo en laboratorio se presentan a continuación en cada una de las tablas con su respectivo material pétreo.

Tabla 22. Resultados de la prueba de equivalente de arenas triturada.

Equivalente de Arenas Triturada								
Muestra	Arcillas (cm)	Arenas (cm)	Eqv. De arena (%)					
1	10,8	34,2	82,41					
2	11,2	34,8	84,82					
3	12,3	34,8	77,24					
		Promedio	81,49					
	Long Pisón	25,3	cm					

Tabla 23. Resultados de la prueba de equivalente de arenas volcánica.

Equivalente de Arenas Volcánica								
Muestra	Arcillas (cm)	Eqv. De arena (%)						
1	11	34,98	88,00					
2	11,3	88,05						
3	11,4	35,2	86,84					
		Promedio	87,63					
	Long Pisón	25,3	cm					

Fuente: Propia

B.1.7. Desgaste de los ángeles (ASTM C 131-03)

Por medio de las siguientes tablas se da a conocer los valores obtenidos mediante el ensayo de desgaste por medio de la máquina de los ángeles en grava triturada y sello triturado.

Tabla 24. Resultados de la prueba de desgaste de los ángeles en grava triturada.

11 esferas	Grava tipo B
Pasa 3/4 y retiene ½ (g)	2500
pasa1/2 retiene3/8 (g)	2500
Suma peso inicial (g)	5000
Peso Final (gr)	4404
Pu (%)	11,92

Tabla 25. Resultados de la prueba de desgaste de los ángeles en sello triturado.

8 esferas	Sello tipo C
Pasa 3/8 y retiene 1/4 (g)	2500
pasa1/4 retiene No.4 (g)	2500
Suma peso inicial (g)	5000
Peso Final (gr)	4358
Pu (%)	12,84

B.1.8. Propuesta granulométrica

La tabla que se muestra a continuación contiene los valores de la propuesta que se realizó para una mezcla asfáltica densa en caliente con el fin de tener los valores exactos en porcentaje para cada tipo de material pétreo.

Tabla 26. Resultados de la propuesta granulométrica.

	INTEGRACION DE LOS MATERIALES PETREOS												
	Mallas	1"	3/4"	1/2"	3/8"	1/4"	No.4	No.10	No.20	No.40	No.60	No.100	No.200
	Grava triturada	100	93,77	40,93	3,60	0,31	0,18	0	0	0	0	0	0
% Que Pasa	Sello triturado	100	100	100	75,39	13,62	3,68	0	0	0	0	0	0
Габа	Arena volcánica	100	100	100	100	100	100	91,89	55,14	22,03	13,43	8,06	5,30
	Arena triturada	100	100	100	100	100	100	50,00	22,85	15,03	12,27	9,82	7,21
							М	ALLAS					
	% Propuesto	1"	3/4"	1/2"	3/8"	1/4"	No.4	No.10	No.20	No.40	No.60	No.100	No.200
Grava triturada	25,00	25	23,44	10,23	0,90	0,08	0,05	0,00	0,00	0,00	0,00	0,00	0,00
Sello triturado	30,00	30	30	30	22,62	4,09	1,10	0,00	0,00	0,00	0,00	0,00	0,00
Arena volcánica	25,00	25	25	25	25	25	25	22,97	13,79	5,51	3,36	2,02	1,32
Arena triturada	20,00	20	20	20	20	20	20	10	4,57	3,01	2,45	1,96	1,44
SUMAS	100,00	100	98,44	85,23	68,52	49,16	46,15	32,97	18,36	8,51	5,81	3,98	2,77

Fuente: Propia

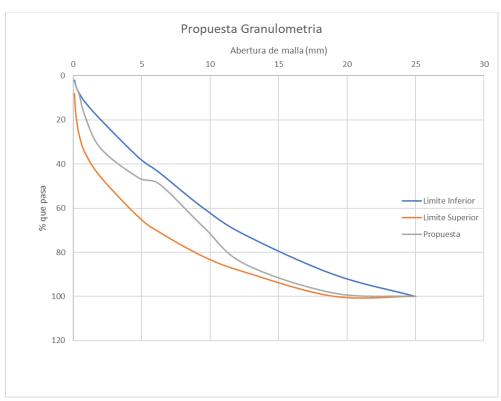

En la siguiente tabla se muestra un resumen de la propuesta con los límites para determinar si la propuesta cumple o no la granulometría.

Tabla 27. Tabla resumen de la propuesta granulométrica.

Granul	Bronuecto		
Límite Inferior	Límite superior	Abertura de la Malla (mm)	Propuesta
100	100	25	100,00
90	100	19	98,44
72	89	12,5	85,23
60	82	9,5	68,52
44	71	6,3	49,16
37	64	4,75	46,15
20	46	2	32,97
12	35	0,85	18,36
8	27	0,425	8,51
6	21	0,25	5,81
4	16	0,15	3,98
2	8	0,075	2,77

En la siguiente grafica se plasma los datos de la tabla 27 anteriormente observada.

Grafica 1. Propuesta granulométrica vs limites granulométricos.

B.1.9. Contenido óptimo de asfalto

A continuación, mediante las siguientes tablas se presentarán los cálculos y resultados correspondiente al contenido óptimo de la mezcla asfáltica densa en caliente mediante el método Marshall, los cuales pertenecen a las pastillas testigo, modificadas No. 1, modificadas No. 2 y por último para las pastillas modificadas No.3.

Tabla 28. Cálculo de la cantidad de material para la fabricación las pastillas testigo.

		Material grueso Material Fino Triturado Material Fino Volcánico									Material Fino Triturado													
Pastilla	Ca		l por m stilla (or	SUMA	Pastilla		Canti	dad por	malla por	pastilla	(g)		SUMA	SUMA Pastilla		Canti	dad por	malla p	or pastil	la (g)		SUMA
No.	3/4"	1/2"	3/8"	1/4"	No.4		No.	No.10	No.20	No.40	No.60	No.100	No.200	Fondo		No.	No.10	No.20	No.40	No.60	No.100	No.200	Fondo	
1	18	152	189	221	35	615	1	68	75	51	14	10	6	14	238	1	82	91	61	17	11	8	17	287
2	19	152	190	220	35	616	2	68	75	51	14	10	6	14	238	2	82	91	61	17	11	8	17	287
3	16	151	191	220	35	613	3	68	75	51	14	10	6	14	238	3	82	91	61	17	11	8	17	287
4	17	150	190	220	35	612	4	68	75	51	14	10	6	14	238	4	82	91	61	17	11	8	17	287
5	18	150	190	220	35	613	5	68	75	51	14	10	6	14	238	5	82	91	61	17	11	8	17	287
6	20	151	190	220	35	616	6	68	75	51	14	10	6	14	238	6	82	91	61	17	11	8	17	287
7	19	150	191	220	35	615	7	68	75	51	14	10	6	14	238	7	82	91	61	17	11	8	17	287
8	20	151	190	220	35	616	8	68	75	51	14	10	6	14	238	8	82	91	61	17	11	8	17	287
9	19	149	190	220	35	613	9	68	75	51	14	10	6	14	238	9	82	91	61	17	11	8	17	287
10	18	149	191	220	35	613	10	68	75	51	14	10	6	14	238	10	82	91	61	17	11	8	17	287
11	19	149	190	220	35	613	11	68	75	51	14	10	6	14	238	11	82	91	61	17	11	8	17	287
12	19	149	190	220	35	613	12	68	75	51	14	10	6	14	238	12	82	91	61	17	11	8	17	287
13	20	149	190	220	35	614	13	68	75	51	14	10	6	14	238	13	82	91	61	17	11	8	17	287
14	19	149	190	220	35	613	14	68	75	51	14	10	6	14	238	14	82	91	61	17	11	8	17	287
15	18	150	190	220	35	613	15	68	75	51	14	10	6	14	238	15	82	91	61	17	11	8	17	287

Contenido de asfalto 4%						
Pastilla No.1	47,424					
Pastilla No.2	47,47					
Pastilla No.3	47,34					
Suma	142,23					
Cont. De asfalto (g)	142,23					

Contenido de asfalto 4.5%						
Pastilla No.4	53,47					
Pastilla No.5	53,51					
Pastilla No.6	53,66					
Suma	160,64					
Cont. De asfalto (g)	160,64					

Contenido de asfalto 5%						
Pastilla No.7	59,9					
Pastilla No.8	59,9					
Pastilla No.9	59,7					
Suma	179,5					
Cont. De asfalto (g)	179,50					

Contenido de asfalt	o 5.5%					
Pastilla No.10	66,03					
Pastilla No.11	66,03					
Pastilla No.12	66,03					
Suma	198,10					
Cont. De asfalto (g) 198,10						

Contenido de asfa	alto 6%
Pastilla No.13	72,44
Pastilla No.14	72,38
Pastilla No.15	72,38
Suma	217,19
Cont. De asfalto	
(gr)	217,19

Tabla 29. Cálculo de contenido óptimo para las pastillas testigo.

Tipo de Asfalt	Ac-20
0	

Peso específico asfalto	1,03
Peso específico medio mezcla áridos	2,41

Graveda d asfalto	Graveda d grava(kg /m3)	Graved ad arena (kg/m3)	%	%	Grava - arena media (grav edad)
1,03	2,60	2,30	40,0	60,0	2,41

DETERMINACION DEL PORCENTAJE OPTIMO DE ASFALTO

						Peso (gr)							so cifico	Vol.	, % del to	tal	,	Vacíos (%)	Estabilio	dad (kgf)	ı	Flujo	
Pastilla No.	Muestra	% Asfalto	% Árido	Material (g)	Peso Seco (g)	Peso Sumergido (g)	Peso Sup. Seco (gr) (En el aire)	Diámetro (cm)	Altura (cm)	Área (cm²)	Volumen (cm³)	Aparente	Max Teórico	Asfalto	Áridos	Vacíos	Áridos (VMA)	Rellenos (VFA)	Mezcla Total (Vacíos)	Medida	Corregida	Flujo calculado	Flujo de la maquina (mm)	Peso Volumétrico (g/cm³)
1	1	4	96	1140	1112	657,73	1188	9,89	6,74	76,821	530,27	2,24	2,287	8,699	89,228	2,073	10,772	81%	2,055	1137,29	1084,97	4,241	2,794	2,097
2	2	4	96	1141	1096	637,84	1167	9,89	6,59	76,821	529,16	2,21	2,287	8,563	87,834	3,603	12,166	70%	3,585	898,31	856,99	4,790	3,048	2,071
3	3	4	96	1138	1103	648,635	1183	9,9	6,91	76,977	534,37	2,21	2,287	8,598	88,193	3,209	11,807	73%	3,192	727,61	694,14	4,648	2,413	2,064
4	1	4,5	95,5	1137	1114	662,575	1186	9,9	6,50	76,977	523,43	2,27	2,273	9,900	89,794	0,306	10,206	97,0%	0,308	1069,01	1019,84	4,018	3,251	2,128
5	2	4,5	95,5	1138	1100	647,275	1172	9,9	6,58	76,977	524,73	2,23	2,273	9,760	88,526	1,714	11,474	85,1%	1,716	881,24	840,70	4,517	3,175	2,096
6	3	4,5	95,5	1141	1108	640,305	1181	9,9	6,58	76,977	540,70	2,18	2,273	9,542	86,544	3,914	13,456	70,9%	3,916	1017,80	970,98	5,298	3,683	2,049
7	1	5	95	1140	1115	657,815	1185	9,9	6,40	76,977	527,19	2,25	2,259	10,913	88,614	0,473	11,386	95,8%	0,487	1376,27	1312,96	4,483	2,743	2,115
8	2	5	95	1141	1118	659,6	1187	9,9	6,45	76,977	527,40	2,25	2,259	10,927	88,732	0,341	11,268	97,0%	0,354	1359,20	1296,68	4,436	3,302	2,120
9	3	5	95	1138	1117	663	1193	9,91	6,50	77,132	530,00	2,25	2,259	10,927	88,732	0,341	11,268	97,0%	0,354	1034,87	987,27	4,436	3,429	2,108
10	1	5,5	94,5	1138	1120	668,6525	1230	9,9	6,80	76,977	561,35	2,19	2,245	11,700	85,913	2,387	14,087	83,1%	2,405	949,52	905,84	5,546	3,810	1,995
11	2	5,5	94,5	1138	1120	668,1	1225	9,91	6,80	77,132	556,90	2,20	2,245	11,748	86,266	1,986	13,734	85,5%	2,004	1086,08	1036,12	5,407	4,191	2,011
12	3	5,5	94,5	1138	1124	676,09	1230	9,9	6,80	76,977	553,91	2,22	2,245	11,860	87,089	1,051	12,911	91,9%	1,069	1034,87	987,27	5,083	2,921	2,029
13	1	6	94	1139	1144	669,29	1233	9,9	6,60	76,977	563,71	2,19	2,231	12,740	85,302	1,958	14,698	86,7%	1,972	898,31	856,99	5,787	3,302	2,029
14	2	6	94	1138	1145	666,91	1231	9,9	6,60	76,977	564,09	2,18	2,231	12,711	85,107	2,182	14,893	85,3%	2,196	1120,22	1068,69	5,863	3,556	2,030
15	3	6	94	1138	1149	674,645	1233	9,9	6,60	76,977	558,36	2,21	2,231	12,862	86,121	1,017	13,879	92,7%	1,031	1086,08	1036,12	5,464	3,175	2,058

Tabla 30. Cálculo de la cantidad de material para la fabricación las pastillas con modificación No.1.

		Ma	aterial gr	ueso						Materia	l Fino Tri	turado							Material	Fino Vol	cánico			
Pastilla Cantidad por malla por pastilla (g)						SUMA	Pastilla	Cantidad por malla por pastilla (g)							SUMA	Pastilla	Cantidad por malla por pastilla (g)							
No.	3/4	1/2	3/8	1/4	No.4	SUIVIA	No.	No.10	No.20	No.40	No.60	No.100	No.200	Fondo	SUNIA	No.	No.10	No.20	No.40	No.60	No.100	No.200	Fondo	SUMA
1	21	149	191	220	35	616	1	68	75	51	14	10	6	14	238	1	82	91	61	17	11	8	17	287
2	18	150	191	221	35	615	2	68	75	51	14	10	6	14	238	2	82	91	61	17	11	8	17	287
3	21	151	190	220	35	617	3	68	75	51	14	10	6	14	238	3	82	91	61	17	11	8	17	287
4	17	150	189	220	35	611	4	68	75	51	14	10	6	14	238	4	82	91	61	17	11	8	17	287
5	17	151	191	220	35	614	5	68	75	51	14	10	6	14	238	5	82	91	61	17	11	8	17	287
6	21	149	189	220	35	614	6	68	75	51	14	10	6	14	238	6	82	91	61	17	11	8	17	287
7	19	151	190	221	35	616	7	68	75	51	14	10	6	14	238	7	82	91	61	17	11	8	17	287
8	20	150	191	221	35	617	8	68	75	51	14	10	6	14	238	8	82	91	61	17	11	8	17	287
9	21	151	191	220	35	618	9	68	75	51	14	10	6	14	238	9	82	91	61	17	11	8	17	287
10	18	149	190	220	35	612	10	68	75	51	14	10	6	14	238	10	82	91	61	17	11	8	17	287
11	18	150	189	220	35	612	11	68	75	51	14	10	6	14	238	11	82	91	61	17	11	8	17	287
12	18	149	190	220	35	612	12	68	75	51	14	10	6	14	238	12	82	91	61	17	11	8	17	287
13	20	151	191	220	35	617	13	68	75	51	14	10	6	14	238	13	82	91	61	17	11	8	17	287
14	19	149	191	220	35	614	14	68	75	51	14	10	6	14	238	14	82	91	61	17	11	8	17	287
15	18	150	191	220	35	614	15	68	75	51	14	10	6	14	238	15	82	91	61	17	11	8	17	287

Contenido de asfal	to 4%
Pastilla No.1	47,47
Pastilla No.2	47,42
Pastilla No.3	47,51
Suma	142,40
Cont. De asfalto (g)	142,40

Contenido de asfalto 4.5%						
Pastilla No.4	53,42					
Pastilla No.5	53,56					
Pastilla No.6	53,56					
Suma	160,54					
Cont. De asfalto (g)	160,54					

Contenido de asfa	Con	
Pastilla No.7	59,9	Pa
Pastilla No.8	60,0	Pa
Pastilla No.9	60,0	Pa
Suma	179,9	
Cont. De asfalto (g)	179,87	Cont.

Contenido de asfalto	5.5%	C
Pastilla No.10	65,97	
Pastilla No.11	65,97	
Pastilla No.12	65,97	
Suma	197,92	
Cont. De asfalto (g)	197,92	Coi
	Pastilla No.10 Pastilla No.11 Pastilla No.12 Suma	Pastilla No.11 65,97 Pastilla No.12 65,97 Suma 197,92

Contenido de asfal	to 6%
Pastilla No.13	72,63
Pastilla No.14	72,44
Pastilla No.15	72,44
Suma	217,51
Cont. De asfalto (g)	217,51

Tabla 31. Cálculo de contenido óptimo para las pastillas con modificación No.1.

Tipo	
de	Ac-20
Asfalto	

Peso específico asfalto	1,03
Peso específico medio mezcla áridos	2,41

Gravedad asfalto	Gravedad grava(kg/m3)	Gravedad arena (kg/m3)	%	%	Grava - arena media (gravedad)			
1,03	2,60	2,30	40,00	60,00	2,41			

DETERMINACION DEL PORCENTAJE OPTIMO DE ASFALTO

						Peso (gr))					_	eso cifico	Vol.	, % del to	tal		Vacíos %		Estabili	dad (kgf)	Fluje)	
Pastilla	Muestra	% Asfalto	% Árido	Material (g)	Peso Seco (g)	Peso Sumergido (g)	Peso Sup. Seco (g) (En el aire)	Diámetro (cm)	Altura (cm)	Área (cm²)	Volumen (cm³)	Aparente	Max teórico	Asfalto	Áridos	Vacíos	Áridos (VMA)	Rellenos (VFA)	Mezcla Total (Vacíos)	Medida	Corregida	Flujo calculado	Flujo (mm)	Peso Volumétrico (gr/cm3)
1	1	4,0	96,00	1141	1159	640,90	1173	9,90	6,65	76,98	532,10	2,20	2,29	8,56	87,79	3,65	12,21	70%	3,63	1103,15	1000,56	4,81	3,30	2,18
2	2	4,0	96,00	1140	1158	639,12	1173	9,89	6,58	76,82	533,89	2,20	2,29	8,53	87,52	3,95	12,49	68%	3,94	1256,78	1139,90	4,92	3,30	2,17
3	3	4,0	96,00	1142	1167	659,77	1187	9,90	6,59	76,98	527,23	2,25	2,29	8,74	89,67	1,59	10,33	85%	1,57	1188,5	1077,97	4,07	3,07	2,21
4	1	4,5	95,50	1136	1169	518,33	1192	9,90	6,70	76,98	673,67	1,77	2,27	7,73	70,10	22,17	29,90	26%	22,17	1069,01	969,59	11,77	3,05	1,74
5	2	4,5	95,50	1139	1154	511,36	1179	9,90	6,60	76,98	667,64	1,77	2,27	7,72	69,98	22,30	30,02	26%	22,31	932,45	845,73	11,82	4,06	1,73
6	3	4,5	95,50	1139	1163	510,00	1178	9,89	6,65	76,82	668,00	1,76	2,27	7,70	69,86	22,44	30,14	26%	22,44	1273,85	1155,38	11,87	3,94	1,74
7	1	5,0	95,00	1141	1165	527,43	1180	9,90	6,60	76,98	652,58	1,81	2,26	8,78	71,27	19,95	28,73	31%	19,96	1017,8	923,14	11,31	3,94	1,79
8	2	5,0	95,00	1142	1164	518,50	1189	9,90	6,60	76,98	670,50	1,77	2,26	8,61	69,89	21,50	30,11	29%	21,51	1137,29	1031,52	11,85	3,56	1,74
9	3	5,0	95,00	1143	1162	515,27	1185	9,90	6,60	76,98	669,73	1,77	2,26	8,59	69,73	21,68	30,27	28%	21,69	1171,43	1062,49	11,92	3,56	1,74
10	1	5,5	94,50	1137	1179	656,88	1196	9,92	6,70	77,29	539,12	2,22	2,25	11,84	86,97	1,19	13,03	91%	1,20	1017,8	923,14	5,13	4,06	2,19
11	2	5,5	94,50	1137	1180	654,50	1195	9,96	6,70	77,91	540,50	2,21	2,25	11,81	86,70	1,50	13,30	89%	1,51	949,52	861,21	5,24	4,06	2,18
12	3	5,5	94,50	1137	1178	658,75	1197	9,97	6,70	78,07	538,25	2,22	2,25	11,88	87,21	0,92	12,79	93%	0,94	1051,94	954,11	5,04	3,56	2,19
13	1	6,0	94,00	1142	1179	654,42	1206,00	9,95	6,70	77,76	551,59	2,19	2,23	12,73	85,26	2,00	14,74	86%	2,02	1051,94 0	954,11	5,80	3,56	2,14
14	2	6,0	94,00	1139,00	1177 ,00	662,58	1209,00	9,97	6,70	78,07	546,43	2,21	2,23	12,89	86,32	0,79	13,68	94%	0,81	1171,43 0	1062,49	5,39	3,30	2,15
15	3	6,0	94,00	1139,00	1178 ,00	661,90	1205,00	9,95	6,70	77,76	543,11	2,22	2,23	12,93	86,55	0,52	13,45	96%	0,54	1359,20 0	1232,79	5,30	3,05	2,17

Tabla 32. Cálculo de la cantidad de material para la fabricación las pastillas con modificación No.2.

Material grueso							Material Fino Triturado								Material Fino Volcánico									
Pastilla	Cant	Cantidad por malla por pastilla (g)				SUMA	Pastilla No.		Cant	idad po	r malla _l	por pasti	illa (g)		SUMA	Pastilla Cantidad por malla por pastilla (g)							SUMA	
No.	3/4	1/2	3/8	1/4	No.4	SUIVIA	rasilla No.	No.10	No. 20	No.40	No.60	No.100	No.200	Fondo	SUIVIA	No.	No.10	No.20	No.40	No.60	No.100	No.200	Fondo	SUIVIA
1	19	150	190	220	35	614	1	68	75	51	14	10	6	14	238	1	82	91	61	17	11	8	17	287
2	19	150	191	220	35	615	2	68	75	51	14	10	6	14	238	2	82	91	61	17	11	8	17	287
3	19	150	190	220	35	614	3	68	75	51	14	10	6	14	238	3	82	91	61	17	11	8	17	287
4	20	150	190	220	35	615	4	68	75	51	14	10	6	14	238	4	82	91	61	17	11	8	17	287
5	20	149	190	220	35	614	5	68	75	51	14	10	6	14	238	5	82	91	61	17	11	8	17	287
6	19	151	190	220	35	615	6	68	75	51	14	10	6	14	238	6	82	91	61	17	11	8	17	287
7	21	150	189	220	35	615	7	68	75	51	14	10	6	14	238	7	82	91	61	17	11	8	17	287
8	21	150	190	220	35	616	8	68	75	51	14	10	6	14	238	8	82	91	61	17	11	8	17	287
9	19	151	191	220	35	616	9	68	75	51	14	10	6	14	238	9	82	91	61	17	11	8	17	287
10	19	149	190	220	35	613	10	68	75	51	14	10	6	14	238	10	82	91	61	17	11	8	17	287
11	20	150	191	220	35	616	11	68	75	51	14	10	6	14	238	11	82	91	61	17	11	8	17	287
12	19	150	190	220	35	614	12	68	75	51	14	10	6	14	238	12	82	91	61	17	11	8	17	287
13	20	150	191	220	35	616	13	68	75	51	14	10	6	14	238	13	82	91	61	17	11	8	17	287
14	18	151	191	220	35	615	14	68	75	51	14	10	6	14	238	14	82	91	61	17	11	8	17	287
15	21	150	191	220	35	617	15	68	75	51	14	10	6	14	238	15	82	91	61	17	11	8	17	287

Contenido de asfalto 4%									
Pastilla No.1	47,38								
Pastilla No.2	47,42								
Pastilla No.3	47,38								
Suma	142,19								
Cont. De asfalto (g)	142,19								

Contenido de asfalto 4.5%									
Pastilla No.4 53									
Pastilla No.5	53,56								
Pastilla No.6	53,61								
Suma	160,78								
Cont. De asfalto (g) 160,78									

Contenido de asfalto 5%									
Pastilla No.7	59,9								
Pastilla No.8	59,9								
Pastilla No.9	59,9								
Suma	179,7								
Cont. De asfalto (g)	179,66								

Contenido de asfalto 5.5%									
Pastilla No.10	66,03								
Pastilla No.11	66,21								
Pastilla No.12	66,09								
Suma	198,33								
Cont. De asfalto (gr)	198,33								

Contenido de asfalto	o 6%								
Pastilla No.13	72,57								
Pastilla No.14	72,50								
Pastilla No.15	72,63								
Suma	217,70								
Cont. De asfalto (gr)	Cont. De asfalto (gr) 217,70								

Tabla 33. Cálculo de contenido óptimo para las pastillas con modificación No.2.

Tipo de Ac-20 Asfalto

Peso específico asfalto	1,03
Pes o específico medio mezcl a áridos	2,41

Gravedad asfalto	Gravedad grava(kg/m3)	Gravedad arena (kg/m3)	%	%	Grava - arena media (gravedad)		
1,03	2,60	2,30	40,00	60,00	2,41		

DETERMINACION DEL PORCENTAJE OPTIMO DE ASFALTO

	Peso (gr)										Peso Especifico		Vol	Vol., % del total			vacíos %			dad (kgf)	Flujo			
Pastilla No.	Muestra	% Asfalto	% Árido	Material (g)	Peso Seco (g)	Peso Sumergido (g)	Peso Sup. Seco (g) (En el aire)	Diámetro (cm)	Altura (cm)	Área (cm²)	Volumen (cm³)	Aparente	Max teórico	Asfalto	Áridos	vacíos	Áridos (VMA)	Rellenos (VFA)	Mezcla Total (vacíos)	Medida	Corregida	Flujo Calculado	Flujo (mm)	Peso Volumétrico (gr/cm³)
1	1	4	96	1139	1166	650	1184	9,94	6,6	77,60	533,58	2,22	2,29	8,62	88,39	2,99	11,61	74,2%	2,97	1120,22	1035,08	4,57	2,92	2,19
2	2	4	96	1140	1165	648	1180	9,94	6,59	77,60	531,88	2,22	2,29	8,62	88,39	2,99	11,61	74,2%	2,97	1188,5	1098,17	4,57	3,30	2,19
3	3	4	96	1139	1167	657	1190	9,95	6,75	77,76	532,70	2,23	2,29	8,68	88,99	2,33	11,01	78,8%	2,32	949,52	877,36	4,34	3,81	2,19
4	1	4,5	95,5	1140	1168	660,45	1194	9,96	6,74	77,91	533,55	2,24	2,27	9,78	88,68	1,54	11,32	86,4%	1,54	881,24	814,27	4,46	3,94	2,19
5	2	4,5	95,5	1139	1174	654,50	1189	9,95	6,65	77,76	534,50	2,23	2,27	9,72	88,17	2,11	11,83	82,2%	2,11	1120,22	1035,08	4,66	3,56	2,20
6	3	4,5	95,5	1140	1172	652,21	1190	9,95	6,68	77,76	537,80	2,21	2,27	9,67	87,69	2,64	12,31	78,6%	2,64	1205,57	1113,95	4,84	4,06	2,18
7	1	5	95	1140	1170	661,555	1197	9,95	6,58	77,76	535,45	2,24	2,26	10,85	88,14	1,01	11,86	91,5%	1,02	1290,92	1192,81	4,67	5,08	2,19
8	2	5	95	1141	1171	657,22	1196	9,95	6,56	77,76	538,78	2,22	2,26	10,78	87,51	1,71	12,49	86,3%	1,73	1051,94	971,99	4,92	3,68	2,17
9	3	5	95	1141	1173	663	1198	9,96	6,56	77,91	535,00	2,24	2,26	10,87	88,26	0,87	11,74	92,6%	0,89	1051,94	971,99	4,62	3,43	2,19
10	1	5,5	94,5	1138	1193	661,22	1204	9,9	6,79	76,98	542,79	2,22	2,25	11,84	86,97	1,19	13,03	90,9%	1,20	1034,87	956,22	5,13	3,30	2,20
11	2	5,5	94,5	1141	1195	659,01	1205	9,9	6,8	76,98	546,00	2,21	2,25	11,79	86,54	1,68	13,46	87,6%	1,69	1137,29	1050,86	5,30	3,18	2,19
12	3	5,5	94,5	1139	1194	662,32	1209	9,9	6,8	76,98	546,68	2,21	2,25	11,81	86,74	1,45	13,26	89,1%	1,47	1307,99	1208,58	5,22	4,45	2,18
13	1	6	94	1141	1143	646,68	1210	9,98	6,47	78,23	563,32	2,15	2,23	12,51	83,78	3,71	16,22	77,2%	3,72	812,960	751,18	6,39	4,57	2,03
14	2	6	94	1140	1142	655,35	1211	9,95	6,48	77,76	555,65	2,18	2,23	12,69	84,99	2,32	15,01	84,6%	2,33	881,240	814,27	5,91	4,57	2,06
15	3	6	94	1142	1140	650,25	1215	9,97	6,5	78,07	564,75	2,15	2,23	12,53	83,90	3,57	16,10	77,8%	3,59	983,660	908,90	6,34	4,19	2,02

Tabla 34. Cálculo de la cantidad de material para la fabricación las pastillas con modificación No.3.

		Mater	ial grues	so					M	aterial F	ino Trit	urado				Material Fino Volcánico									
Pastilla	Canti	dad por	malla po	or past	illa (g)	SUMA	Pastilla No.	Cantidad por malla por pastilla (g)								Pastilla	Cantidad por malla por pastilla (g)						SUMA		
No.	3/4	1/2	3/8	1/4	No.4	OOMA	r dotina rto.	No.10	No.20	No.40	No.60	No.100	No.200	Fondo	OOMA	No.	No.10	No.20	No.40	No.60	No.100	No.200	Fondo	OOMA	
1	20	149	190	220	35	614	1	68	75	51	14	10	6	14	238	1	82	91	61	17	11	8	17	287	
2	20	149	190	220	35	614	2	68	75	51	14	10	6	14	238	2	82	91	61	17	11	8	17	287	
3	20	150	190	220	35	615	3	68	75	51	14	10	6	14	238	3	82	91	61	17	11	8	17	287	
4	20	150	190	220	35	615	4	68	75	51	14	10	6	14	238	4	82	91	61	17	11	8	17	287	
5	21	150	190	220	35	616	5	68	75	51	14	10	6	14	238	5	82	91	61	17	11	8	17	287	
6	20	150	190	220	35	615	6	68	75	51	14	10	6	14	238	6	82	91	61	17	11	8	17	287	
7	21	150	190	220	35	616	7	68	75	51	14	10	6	14	238	7	82	91	61	17	11	8	17	287	
8	21	150	190	220	35	616	8	68	75	51	14	10	6	14	238	8	82	91	61	17	11	8	17	287	
9	20	151	190	220	35	616	9	68	75	51	14	10	6	14	238	9	82	91	61	17	11	8	17	287	
10	21	151	190	220	35	617	10	68	75	51	14	10	6	14	238	10	82	91	61	17	11	8	17	287	
11	19	149	190	220	35	613	11	68	75	51	14	10	6	14	238	11	82	91	61	17	11	8	17	287	
12	21	150	190	220	35	616	12	68	75	51	14	10	6	14	238	12	82	91	61	17	11	8	17	287	
13	20	150	190	220	35	615	13	68	75	51	14	10	6	14	238	13	82	91	61	17	11	8	17	287	
14	21	149	190	220	35	615	14	68	75	51	14	10	6	14	238	14	82	91	61	17	11	8	17	287	
15	20	150	190	220	35	615	15	68	75	51	14	10	6	14	238	15	82	91	61	17	11	8	17	287	

Contenido de a 4%	Contenido de asfalto 4%										
Pastilla No.1	47,38										
Pastilla No.2	47,38										
Pastilla No.3	47,42										
Suma	142,19										
Cont. De											
asfalto (g)	142,19										

Contenido de as	sfalto 4.5%
Pastilla No.4	53,61
Pastilla No.5	53,66
Pastilla No.6	53,61
Suma	160,87
Cont. De	
asfalto (g)	160,87

Contenido de a	ısfalto 5%	Contenido de asfalto 5.5%							
Pastilla No.7	59,9	Pastilla No.10	66,26						
Pastilla No.8	59,9	Pastilla No.11	66,03						
Pastilla No.9	59,9	Pastilla No.12	66,21						
Suma	179,7	Suma	198,50						
Cont. De asfalto (g)	179,71	Cont. De asfalto (g)	198,50						

Contenido de	asfalto 6%						
Pastilla No.13	72,50						
Pastilla No.14	72,50						
Pastilla No.15	72,50						
Suma	217,51						
Cont. De							
asfalto (gr)	217,51						

Tabla 35. Cálculo de contenido óptimo para las pastillas con modificación No.3.

Tipo de Ac-20 Asfalto

Peso específico asfalto	1,03
Peso específico medio mezcla áridos	2,41

Gravedad asfalto	Gravedad grava(kg/m3)	Gravedad arena (kg/m3)	%	%	Grava - arena media (gravedad)		
1,03	2,60	2,30	40,00	60,00	2,41		

DETERMINACION DEL PORCENTAJE OPTIMO DE ASFALTO

					Peso (gr)								eso ecifico	Vol.,	% del to	tal		vacíos %		Estabilio	lad (kgf)	FI	u jo	
Pastilla No.	Muestra	% Asfalto	Porcentaj e Árido	Material (g)	Peso Seco (g)	Peso Sumergido (g)	Peso Sup. Seco (g) (En el Aire)	Diámetro (cm)	Altura (cm)	Área (cm2)	Volumen (cm3)	Aparente	Max teórico	Asfalto	Árido	vacíos	Áridos (VMA)	Rellenos (VFA)	Mezcla Total (vacíos)	Medida	Corregida	Flujo Calculado	Flujo (mm)	Peso Volumétrico (g/cm³)
1	1	4	96	1139	1175	671,42	1230	9,89	6,98	76,82	558,59	2,20	2,29	8,55	87,72	3,73	12,29	70%	3,72	1120,22	988,03	4,84	3,81	2,10
2	2	4	96	1139	1179	678,39	1236	9,90	6,90	76,98	557,62	2,22	2,29	8,61	88,31	3,08	11,69	74%	3,06	1205,57	1063,31	4,60	2,54	2,11
3	3	4	96	1140	1178	684,00	1239	9,89	6,84	76,82	555,01	2,23	2,29	8,67	88,91	2,42	11,09	78%	2,40	1290,92	1138,59	4,37	3,43	2,12
4	1	4,5	95,5	1140	1183	651,70	1186	9,89	6,70	76,82	534,31	2,22	2,27	9,70	87,97	2,33	12,03	81%	2,33	1137,29	1003,09	4,74	3,56	2,21
5	2	4,5	95,5	1141	1185	660,03	1187	9,90	6,70	76,98	526,98	2,25	2,27	9,84	89,24	0,92	10,76	91%	0,92	898,31	792,31	4,24	3,30	2,25
6	3	4,5	95,5	1140	1188	655,18	1195	9,91	6,70	77,13	539,82	2,21	2,27	9,67	87,73	2,59	12,27	79%	2,60	1171,43	1033,20	4,83	3,81	2,20
7	1	5	95	1141	1199	668,61	1200	9,98	6,70	78,23	531,39	2,26	2,26	10,96	89,01	0,03	10,99	100%	0,04	1256,78	1108,48	4,33	2,92	2,26
8	2	5	95	1141	1201	667,42	1201	10,30	6,66	83,32	533,58	2,25	2,26	10,93	88,73	0,34	11,27	97%	0,35	932,45	822,42	4,44	3,43	2,25
9	3	5	95	1141	1198	670,82	1205	9,98	6,69	78,23	534,18	2,26	2,26	10,95	88,93	0,12	11,07	99%	0,13	1512,83	1334,32	4,36	3,18	2,24
10	1	5,5	94,5	1142	1212	688,67	1249	9,89	6,93	76,82	560,33	2,23	2,25	11,90	87,40	0,69	12,60	94%	0,71	1410,41	1243,98	4,96	5,08	2,16
11	2	5,5	94,5	1138	1214	685,02	1284	9,89	7,07	76,82	598,99	2,14	2,25	11,45	84,07	4,48	15,93	72%	4,50	1598,18	1409,59	6,27	5,08	2,03
12	3	5,5	94,5	1141	1211	686,72	1274	9,89	6,92	76,82	587,29	2,17	2,25	11,58	85,05	3,37	14,95	77%	3,39	1581,11	1394,54	5,89	5,33	2,06
13	1	6	94	1140	1147	654,50	1275	9,91	6,57	77,13	620,50	2,06	2,23	11,97	80,15	7,88	19,85	60%	7,89	898,31	792,31	7,81	3,43	1,85
14	2	6	94	1140	1146	657,82	127	9,96	6,50	77,91	613,19	2,07	2,23	12,08	80,86	7,07	19,14	63%	7,08	949,52	837,48	7,54	4,06	1,87
15	3	6	94	1140	1145	659,26	1254	9,92	6,58	77,29	594,74	2,11	2,23	12,28	82,22	5,50	17,78	69%	5,51	1188,50	1048,26	7,00	3,56	1,93

ANEXO C- REGISTRO FOTOGRAFICO

C.1. PRUEBAS A LOS MATERIALES PÉTREOS

C.1.1. Extracción de materiales

A continuación, se puede observar fotos adicionales sobre la extracción de material en el Banco de materiales ubicado en la vía Morelia - Salamanca a la altura de Cuto.

Foto 1. Extracción de material banco de materiales "la Roka".

Foto 2. Extracción de material banco de materiales "la Roka".

Foto 3. Extracción de material banco de materiales "la Roka".

Foto 4. Extracción de material banco de materiales "la Roka".

C.1.2. Secado de material

Como se observa en la foto 5,6,7 y 8, el proceso de secado de material correspondiente a la grava triturada, sello triturado y arena triturada.

Foto 5. Secado natural del material grava triturada.

Foto 6. Secado natural del material sello triturada.

Foto 7. Secado natural del material arena triturada.

Foto 8. Almacenamiento del material después del secado natural.

C.1.3. Peso volumétrico (ASTM C 29/C 29M-97)

C.1.3.1. Peso volumétrico seco y suelto

A continuación, se observa a detalle el desarrollo de la prueba de peso volumétrico seco y suelto, en las fotos de la 9 a la 13, se evidencia el proceso para arena triturada, arena volcánica, grava triturada y sello triturado.

Foto 9. Prueba peso volumétrico seco y suelto para arena triturada.

Foto 10. Prueba peso volumétrico seco y suelto para arena volcánica

Foto 11. Prueba peso volumétrico seco y suelto para grava triturada.

Foto 12. Prueba peso volumétrico seco y suelto para grava triturada.

Foto 13. Prueba peso volumétrico seco y suelto para sello triturado.

C.1.3.2. Peso volumétrico seco y varillado

A continuación, se puede evidenciar más a detalle el proceso de la prueba de peso volumétrico seco y varillado, de la foto 14 a la 20, se muestra el desarrollo para arena triturada, sello triturado y grava triturada.

Foto 14. Prueba peso volumétrico seco y varillado en arena triturada.

Foto 15. Prueba peso volumétrico seco y varillado en arena triturada.

Foto 16. Prueba peso volumétrico seco y varillado en arena triturada.

Foto 17. Prueba peso volumétrico seco y varillado en sello triturado.

Foto 18. Prueba peso volumétrico seco y varillado en sello triturado.

Foto 19. Prueba peso volumétrico seco y varillado en sello triturado.

Foto 20. Prueba peso volumétrico seco y varillado en grava triturada.

C.1.4. Granulometría (ASTM C 136-01)

A continuación, se presenta mediante las fotos desde la 21 hasta la 32, el desarrollo de la prueba de granulometría que se realizó tanto para agregado grueso como para finos.

Foto 21. Prueba de granulometría para material grava triturada.

Fuente: Propia

Foto 22. Prueba de granulometría para material grava triturada.

Foto 23. Prueba de granulometría para material grava triturada.

Foto 24. Prueba de granulometría para material grava triturada.

Foto 25. Prueba de granulometría para material grava triturada.

Foto 26. Prueba de granulometría para material grava triturada.

Foto 27. Prueba de granulometría para material sello triturado.

Foto 28. Prueba de granulometría para material arena triturada.

Foto 29. Prueba de granulometría para material arena triturada.

Foto 30. Prueba de granulometría para material arena triturada.

Foto 31. Prueba de granulometría para material arena triturada.

Foto 32. Prueba de granulometría para material arena volcánica.

C.1.5. Densidad

C.1.5.1. Densidad de las arenas (ASTM C 128-01)

A continuación, se presentará mediante las fotos de la 33 hasta la 36 el proceso de densidad para las arenas.

Fuente: Propia

Foto 34. Instrumento prueba de densidad en arenas.

Foto 35. Prueba de densidad en arenas.



Foto 36. Prueba de densidad en arenas.

C.1.5.1. Densidad de las gravas (ASTM C 127-01)

A continuación, mediante la foto 37 se presentará el proceso de absorción para las gravas el cual fue realizado directamente en laboratorio.

Foto 37. Prueba de densidad en gravas.

Fuente: Propia

C.1.6. Absorción

C.1.6.1. Absorción en agregados finos (ASTM C 128-01)

En las siguientes fotos de la 38 a la 41 se presentará el respectivo proceso de absorción para el agregado fino, para este caso las arenas los cuales fueron elaborados directamente en laboratorio.

Foto 38. Prueba de absorción en arenas.

Foto 39. Prueba de absorción en arenas.

Foto 40. Prueba de absorción en arenas.

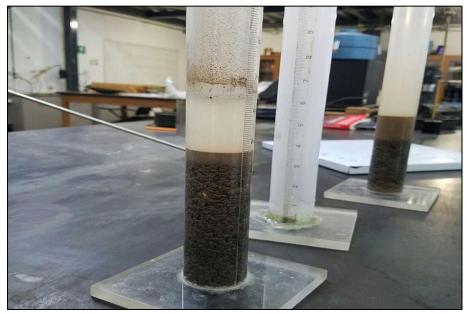
Foto 41. Prueba de absorción en arenas.

Fuente: Propia

C.1.6.2. Absorción en agregado gruesos (ASTM C 127-01)

En las siguientes fotos 42 y 43 se muestra el proceso para la prueba de absorción en grava triturada.

Foto 42. Prueba de absorción en grava triturada.


Foto 43. Prueba de absorción en grava triturada.

C.1.7. Equivalente de arena (ASTM D 2419-09)

A continuación, se presentan las fotos de la 44 a la 46 en las cuales se evidencia el proceso y desarrollo de la prueba equivalente de arena realizada en el laboratorio.

Foto 44. Prueba equivalente de arena para arena volcánica.

Fuente: Propia.

Foto 45. Prueba equivalente de arena para arena volcánica.

Foto 46. Prueba equivalente de arena para arena volcánica.

C.1.8. Desgaste de los ángeles (ASTM C 131-03)

En las siguientes fotografías desde la 47 hasta la 50 se podrá evidenciar el proceso de laboratorio para el desgaste por medio de la máquina de los ángeles para agregado grueso.

Foto 47. Prueba de desgaste por medio de la máquina de los ángeles.

Foto 48. Adición de material y esferas para Prueba de desgaste por medio de la máquina de los ángeles.

Foto 49. Material luego de Prueba de desgaste por medio de la máquina de los ángeles.

Foto 50. Peso del material luego de prueba de desgaste por medio de la máquina de los ángeles.

C.1.9. Pastillas testigo

En las siguientes fotografías de la 51 a la 61 se observa el proceso de desarrollo para las pastillas testigo realizadas directamente en el laboratorio.

Foto 51. Recipientes con material para la realización de las pastillas testigo.

Foto 52. Peso de la mezcla para las pastillas testigo.

Foto 53. Mezcla asfáltica de las pastillas testigo en horno.

Foto 54. Equipo de compactación para las pastillas testigo.

Foto 55. Pastillas testigo luego de ser compactadas.

Foto 56. Obteniendo peso de las pastillas testigo.

Foto 57. Saturación de las pastillas testigo.

Foto 58. Baño maría de las pastillas testigo.

Foto 59. Ensayo de las pastillas testigo mediante la prensa Marshall.

Foto 60. Ensayo de las pastillas testigo mediante la prensa Marshall.

Foto 61. Total de pastillas testigo por porcentaje de asfalto.

C.1.10. Pastillas con modificación No. 1

En las siguientes imágenes de la 62 a la 72 se presenta la elaboración de las pastillas con modificación No. 1, las cuales fueron realizadas directamente en el laboratorio.

Foto 62. Recolección de colillas de cigarrillo para pastillas modificadas No. 1.

Fuente: Propia

Foto 63. Peso de colillas de cigarrillo para pastillas modificadas No. 1.

Foto 64. Cal apagada para pastillas modificadas No. 1.

Foto 65. Mezcla de colillas de cigarrillo con cal para pastillas modificadas No. 1.

Foto 66. Realización de la mezcla asfáltica para pastillas modificadas No. 1.

Foto 67. Mezcla asfáltica para pastillas modificadas No. 1.



Foto 68. Mezcla asfáltica de las pastillas modificadas No. 1 en horno.

Foto 69. Pastillas compactadas de la mezcla asfáltica modificada No. 1

Foto 70. Medición de la geometría para pastillas modificadas No. 1.

Foto 71. Ensayo mediante la prensa Marshall para pastillas modificadas No. 1.

Foto 72. Pastillas modificadas No. 1.

