PROCESOS DE GESTION PREDIAL RURAL CON EL USO DE AERONAVES REMOTAMENTE TRIPULADAS (ART) EN EL INTERCAMBIADOR SAN RAFAEL – INTERCAMBIADOR ESPINAL NORTE

ANGYE KATERINE FORERO ORTIZ MARCELA SAPUY CELIS MAYRA YORELI BECERRA CARDENAS

UNIVERSIDAD LA GRAN COLOMBIA FACULTAD DE INGENIERÍA CIVIL BOGOTÁ D.C. 2016

PROCESOS DE GESTION PREDIAL RURAL CON EL USO DE AERONAVES REMOTAMENTE TRIPULADAS (ART) EN EL INTERCAMBIADOR SAN RAFAEL – INTERCAMBIADOR ESPINAL NORTE

ANGYE KATERINE FORERO ORTIZ MARCELA SAPUY CELIS MAYRA YORELI BECERRA CÁRDENAS

Trabajo de grado presentado como requisito parcial para optar por el título de Ingeniería Civil

Diana María Jurado Gordo Ingeniera Topográfica Asesora Disciplinar

Roy Morales Pérez Asesor Metodológico

UNIVERSIDAD LA GRAN COLOMBIA FACULTAD DE INGENIERÍA CIVIL BOGOTÁ D.C. 2016

CONTENIDO

IN	INTRODUCCIÓN8					
1.	. PLANTEAMIENTO DEL PROBLEMA10					
2.	. ANTECEDENTES 12					
3.	ОВ	JETI	vos	14		
3	3.1	ОВ	JETIVO GENERAL	14		
3	3.2	ОВ	JETIVOS ESPECÍFICOS	14		
4.	JUS	STIF	CACIÓN	15		
5.	MA	RCC	REFERENCIAL	17		
į	5.1	MA	RCO CONCEPTUAL	17		
	5.1.	1	Gestión predial	17		
	5.1.	2	Reconocimiento predial	18		
	5.1.	3	Ficha predial	18		
	5.1.	4	ART	18		
	5.1.	4.1	Imágenes aéreas	19		
	5.1.	5	Levantamiento estación total	19		
	5.1.	6	Levantamiento GPS	19		
	5.1.	7	Teledetección	20		
	5.1.	.8	Orto foto	20		
	5.1.	9	Foto control	20		
	5.1.	10	Restitución	21		
	5.1.	11	Georreferenciación	21		
į	5.2	MA	RCO GEOGRÁFICO	21		
Ę	5.3	MA	RCO LEGAL	25		
6.	MA	RCC	METODOLÓGICO	27		
(5.1	ENI	FOQUE INVESTIGATIVO	27		
(5.2	TIP	O INVESTIGACIÓN	27		
6	5.3	PO	BLACIÓN Y MUESTRA	27		
	6.3.	.1	Población	27		
	6.3.	2	Muestra	28		
6	6.4	DEI	FINICIÓN Y OPERACIONALIZACIÓN DE VARIABLES	28		
	6.4.	.1	Levantamiento topográfico	28		
	6.4	2	Levantamiento GPS	20		

	6.4.	3	Levantamiento ART	. 30
_	S.5 NFOI		NICAS E INSTRUMENTOS DE RECOLECCIÓN Y ANÁLISIS DE CIÓN	. 32
6	6.6	FAS	ES DE INVESTIGACIÓN	. 33
	6.6.	1	Fase I. Método Convencional	. 33
	6.6.	2	Fase II. Método ART	. 34
	6.6.	3	Fase III. Comparativo de datos	. 36
7.	AN	ÁLIS	IS DE RESULTADOS	. 39
7	7.1	FAS	E I. MÉTODO CONVENCIONAL	. 39
7	7.2	FAS	E II. MÉTODO ART	. 43
7	7.3	FAS	E III. COMPARATIVO DE DATOS	. 53
	7.3.	1	Matriz comparativa diagnostico	. 53
	7.3.	2	Matriz comparativa análisis de errores y precisión	. 54
	7.3.	3	Matriz comparativa de recursos	. 57
	7.3.	4	Matriz análisis de resultados	. 59
8.	CO	NCL	JSIONES	. 61
9.	REC	COM	ENDACIONES	. 62
10.	В	IBLI	OGRAFÍA	. 63
11.	Α	NEX	os	. 66
F	ANEX	О А.	PREDIOS AFECTADOS POR LA CALZADA DE 4G	. 66
F	NEX	ОВ.	CARTERAS DE CAMPO METODO CONVENCIONAL FASE I	.72
			CARTERA DE TRANSITO DE LOS LEVANTAMIENTOS ESTACIÓN NAVEGADOR GPS	. 92
F	NEX	O D.	CORRECCIÓN DE IMÁGENES CAPTURADAS	100
A	NEX	OE.	REPORTE DE VUELOS ART	114

LISTA DE TABLAS

Tabla 1 Abscisado de los predios	23
Tabla 2 Marco jurídico gestión predial	25
Tabla 3 Especificaciones estación total	29
Tabla 4 Especificaciones navegador GPS	30
Tabla 5 Especificaciones ART	31
Tabla 6 Actividades fase I	33
Tabla 7 Actividades fase II	34
Tabla 8 Actividades fase III	36
Tabla 9 Ficha predial predio N° 1	39
Tabla 10 Ficha predial predio N°2	40
Tabla 11 Ficha predial predio N° 3	40
Tabla 12 Ficha predial predio N°4	41
Tabla 13 Cuadro resumen fase I	42
Tabla 14 Uso del suelo residencial, agropecuario, ganadero y/o comer	cial44
Tabla 15 Errores totales en la corrección de imágenes para los ejes X,	Y y Z .52
Tabla 16 Matriz diagnostica comparativa	53
Tabla 17 Matriz comparativa análisis de errores y precisión N° 1	54
Tabla 18 Matriz comparativa análisis de errores y precisión N° 2	55
Tabla 19 Matriz comparativa análisis de errores y precisión N° 3	56
Tabla 20 Matriz comparativa de recursos	58
Tabla 21 Matriz análisis de resultados	59

LISTA DE FIGURAS

Figura	1 Mapa de procesos de gestión predial	12
Figura	2 Mapa geográfico de la vía de estudio	22
Figura	3 Ubicación de la nueva vía de 4G	23
Figura	4 Abscisado de los predios seleccionados	24
Figura	5 Inspección ocular predio N°1	39
Figura	6 Inspección ocular predio N° 2	40
Figura	7 Inspección ocular predio N° 3	40
Figura	8 Inspección ocular predio N° 4	41
Figura	9 Aeronave multirrotor Phantom Drone Fra Dji y cámara Sony NEX-	544
Figura	10 Comandos de vuelo Fix4d	45
Figura	11 Proyección de vuelo	46
Figura	12 Imágenes añadidas al software	47
Figura	13 Enlace de imágenes	48
Figura	14 Nube de puntos con superficie moderada y baja	49
Figura	15 Depuración para terreno natural	50
Figura	16 Antes y después de generar una orto foto	50
Figura	17 Traslape de las imágenes	51
Figura	18 Localización de las imágenes con su error	52

LISTA DE GRÁFICOS

Gráfico 1 Actividades del proyecto del sistema	a de gestión predial38	8
--	------------------------	---

INTRODUCCIÓN

El considerable crecimiento que tiene el país en el ámbito económico para el departamento del Tolima cuenta con una relación del sistema vial, dicho sistema brinda un porcentaje razonable a la economía. La generación de nuevos proyectos de infraestructura vial generados por el Estado Colombiano busca conectar el departamento con el centro del país, brindando un aumento en la economía del sector.

La intención del estado en generar un crecimiento económico para el país implica buscar una mayor movilidad de personas y bienes del sur al centro del país; esto conlleva al desarrollo del proyecto vial intercambiador San Rafael-Espinal. La vía existente es una vía de orden nacional, que en la actualidad solo cuenta con una calzada de doble sentido; el nuevo corredor vial se ejecutará en el costado occidental partiendo desde el intercambiador San Rafael, al pasar la caseta de peaje será al costado oriental hasta el intercambiador Espinal.

El proyecto de infraestructura vial por ampliación de la malla vial afecta predios en su totalidad o parcialmente, por lo que deberán ser adquiridos por el estado, lo cual implica en primer lugar adelantar los estudios de gestión predial para la identificación (física y jurídica) y el proceso de compra y adquisición.

Sin embargo, la gestión predial presenta algunos inconvenientes en la elaboración de la ficha predial considerando que los datos tiene una temporalidad de acuerdo a la información obtenida en campo de....., por lo cual, el proceso de toma de información como lo será, los tiempos de viaje y recorrido para llegar a la zona afectada, la inspección visual para cada uno de los predios, los tiempos de trabajos y los altos costos del equipo requerido para los levantamientos topográficos, ocasiona mayor complejidad en el proceso de gestión predial. Para afrontar dichos contratiempos se busca la forma de optimizar los procesos en zonas rurales para las obras de infraestructura vial que se generan en el país a partir de aeronaves remotamente tripuladas (ART), el cual consiste en la captura de imágenes aéreas sobre el terreno obteniendo fotografías que demandan un trabajo de oficina con la finalidad de digitalizar las imágenes obtenidas en campo y obtener la información necesaria del terreno estudiado con el propósito de dar a conocer una nueva metodología en los proceso para la adquisición predial.

Teniendo en cuenta lo anterior, en la presente investigación se generaron capturas de información de campo por los métodos topográficos de estación

total, navegador GPS y aeronaves remotamente tripuladas (ART) a cuatro predios afectados por la nueva calzada, realizando así un análisis comparativo de los tiempos de trabajo, la precisión de los equipos utilizados, el tipo de suelo y el área (total, construida y zona de cultivo).

1. PLANTEAMIENTO DEL PROBLEMA

El desarrollo de un país está relacionado directamente con sus carreteras teniendo en cuenta que por medio de estas se realizará transporte de mercancía como de pasajeros, por lo cual las vías 4G tienen como objetivo principal mejorar la competitividad del país, disminuyendo los costos y tiempos de transporte de las personas que circulan por los diferentes corredores viales. Generando nuevas perspectivas a futuro y ofreciendo mejor calidad de vida para los colombianos. Teniendo en cuenta que las vías 4G mejoraran la infraestructura vial existente, se ha empezado a desarrollar y aplicar esta infraestructura en el país con el fin de optimizar las conexiones entre ciudades y disminuir el tiempo de desplazamiento.

Con el paso del tiempo la infraestructura colombiana ha tenido un cambio en cuanto a la seguridad y confort que se les brinda a quienes diariamente transitan por los diferentes corredores viales, con el fin de ofrecer un servicio óptimo y principalmente que los usuarios tengan menores tiempos de viaje, economía y total seguridad por el sector que se está transitando, es por este motivo, que se plantea la necesidad de realizar la obra de infraestructura vial que busca la implementación de una nueva calzada en la variante Girardot – Espinal – Neiva para lograr convertirla en una vía de cuarta generación, con el propósito de brindar mejor movilidad en este sector; a su vez, existen predios que se encuentran situados en los bordes de las calzadas razón por la cual será necesaria su compra para la intervención del nuevo proyecto.

En la primera etapa del proceso de gestión predial se encuentra la identificación física y jurídica del predio afectado por el diseño geométrico de la vía y la segunda etapa, la compra y adquisición de los predios para la construcción de las carreteras. En estas etapas se presentan una serie de dificultades las cuales se nombran a continuación:

- Los avaluadores catastrales son actores encargados de realizar la gestión de los terrenos que se ven afectados por la vía (la inspección ocular predio a predio para la determinación de áreas y avaluó comercial) quienes determinaran el valor comercial que tendrá el lugar mediante investigaciones y análisis estadísticos ya brindados.
- Largos periodos de trabajo, se generan al realizar el debido levantamiento de los terrenos afectados, ya sea el levantamiento topográfico con estación total o con navegador GPS, teniendo en cuenta

áreas de mayor extensión en predios rurales a comparación del escenario urbano.

 Catastro desactualizado, el proceso de gestión predial requiere información vigente además de la notificación al propietario en el momento de la visita de campo.

Es importante resaltar que los avalúos catastrales están reglamentados principalmente por el Decreto catastral 1420 de 1998, Resolución 70 de 2011 y Resolución 620, emanada de la Dirección General del Instituto Geográfico Agustín Codazzi; Resolución 64 de 1994 donde consiste en las especificaciones técnicas mínimas que deben cumplir las personas naturales o jurídicas para realizar trabajos fotogramétricos y cartográficos y en último lugar la Circular reglamentaria 002 sobre requisitos generales de aeronavegabilidad y operaciones para RPAS.

La disponibilidad del área del predio afectado está directamente relacionado con el proyecto, es por esto que la adquisición de predios donde se construirá la infraestructura vial se ha convertido en uno de los principales problemas que repercuten en el atraso de las obras viales, es primordial la compra de área de reserva, a través de esta nueva metodología, se busca optimizar los procesos de gestión predial teniendo como beneficio la eficiencia del trabajo que se realiza para poder brindar información ágil y concisa en menores tiempos.

Al generar la pregunta problema: ¿cómo optimizar los procesos de gestión predial para obras de infraestructura vial mediante la utilización de imágenes capturadas a partir de aeronaves remotamente tripuladas (ART) en áreas rurales?

2. ANTECEDENTES

La tesis propuesta por Andrés Aguirre Cano y Andrés Iván Obando¹ da a conocer la importancia que tiene el crecimiento y el desarrollo económico del departamento del Putumayo, donde de alguna u otra forma dependen de la infraestructura vial; la calidad del sistema vial que se encuentra deteriorada y olvidado por el estado empezará a desarrollar proyectos que intercomunique este departamento con el centro del país. Se determina que el estudio realizado sirva de complemento práctico, proponiendo una metodología a seguir para el buen desarrollo de la gestión predial en el proceso de la adquisición de predios la cual se explica en la figura 1.

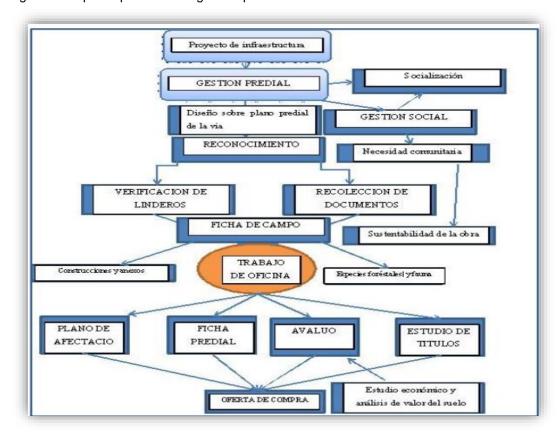


Figura 1 Mapa de procesos de gestión predial

Fuente. http://repository.udistrital.edu.co/bitstream/11349/2553/1/ObandoPati%C3%B1oAndresIvan2015.pdf

¹CANO, Andres Mauricio y OBANDO, Andres Ivan;. (2015). Propuesta metodológica para la gestión predial para predios afectados por la ejecución de obras de infraestructura vial. Trabajo de grado. Bogotá D.C.: Universidad Distrital Francisco Jose De Caldas Facultad De Ingeniería.150p.

En la metodología propuesta cada uno de estos ítems tiene un proceso para la obtención de la información con el fin de determinar variables jurídicas, económicas, sociales y culturales las cuales son evidenciadas únicamente en el momento de la gestión predial obteniendo el alcance de la obra y las necesidades del espacio público. Es así, como Aguirre y Obando plantean una nueva forma de desarrollo en los procesos de gestión predial teniendo como principal actor al hombre y la comunidad con el fin de satisfacer y mitigar las necesidades de crecimiento y bienestar.

En la investigación realizada por Ramón Zamora² expone el principal problema que tienen los procesos de gestión predial, el cual radica en la información desactualizada que brinda catastro la cual se obtiene cada 5 años, dicho lo anterior, si se necesita realizar trabajos sobre algún lugar tendrán que corroborar la información dada. Zamora propone el uso de drones en zonas urbanas para agilizar y facilitar el proceso de gestión predial en el momento de un avaluó, generando palabras y conceptos nuevos los cuales se aplicarán en la presente investigación. La utilización de aeronaves en tareas de planificación y control del territorio nacional puede darse con la tecnología actual disponible en el mercado a bajo costo, hoy es posible avanzar de forma concreta y ayudar a las ciudades a mejorar sus procesos de gestión urbana; de igual modo se podría decir que en el futuro logre ser aplicado el uso de los drones para realizar tareas de gestión predial tanto en zonas urbanas como en zonas rurales con el objetivo de implementar una nueva metodología siendo este un método eficaz.

La investigación de Malveaux³ habla acerca del uso de aeronaves no tripulados y la importancia que puede adquirir el trabajo en las diferentes áreas. Actualmente el uso de las aeronaves no tripuladas es utilizado para la inspección de diferentes espacios agrícolas y evaluar el área que puede tener el terreno, es una herramienta de gran utilidad para la agricultura, pero el propósito es generar más proyectos que incluyan las aeronaves no tripulados en diferentes aspectos, como lo será el uso de drones en dichos procesos debido a que su uso puede llegar a ser manipulado de la manera más eficiente en el momento de realizar un avaluó catastral y obtener información del lugar.

-

²ZAMORA, Ramón. (Agosto de 2015). El uso de drones en la gestión urbana. Obtenido de http://blogs.iadb.org/ciudadessostenibles/2015/08/28/drones/

³MALVEAUX, Charles. (2014). Investigating the potential for drone use in agriculture. (L. F. Benedict, Ed.) Louisiana agriculture, vol.57, (Nº.1), 32 p. Obtenido de http://www.lsuagcenter.com/NR/rdonlyres/CDDE1EE5-BB6B-4CD4-B100-B0BA0BCC721D/96270/PDFI.pdf

3. OBJETIVOS

3.1 OBJETIVO GENERAL

Contrastar los procesos de gestión predial rural con el uso de aeronaves remotamente tripuladas (art) en el intercambiador san Rafael – intercambiador Espinal norte.

3.2 OBJETIVOS ESPECÍFICOS

- Determinar las áreas afectadas a través de levantamientos convencionales (estación total y navegador GPS).
- Evaluar las áreas involucradas a partir de imágenes capturadas mediante (ART).
- Comparar los métodos de captura de imágenes ART con los levantamientos de estación total y navegador GPS.

4. JUSTIFICACIÓN

El sistema de gestión predial es un proceso primordial en el momento de la construcción de infraestructura vial, es por esta razón que es necesaria la adquisición de aquellas áreas que se verán involucradas en la obra, teniendo en cuenta que, por medio de esta, se podrá determinar los predios que resultan afectados en el trazado de la vía.

Cuando se genera el avaluó catastral se debe tener en cuenta el Decreto 1420 de 1998, las autoridades catastrales tendrán la obligación de formar los catastros o actualizarlos en el curso de períodos de cinco (5) años en todos los municipios del país, con el objetivo de revisar los elementos físico y jurídico al eliminar las posibles disparidades en el avalúo catastral originadas en mutaciones físicas, variaciones de uso o de productividad, obras públicas o condiciones locales del mercado inmobiliario". ⁴

En los métodos de levantamiento directo se encuentra el método topográfico a través de estación total, el sistema de posicionamiento global (GPS). Estos dos sistemas cuentan con errores de precisión o de cierre, además de esto, su lapso de ejecución podría ser extenso. Por otro lado, el perito avaluador es un actor que desempeña una función primordial en el proceso de gestión predial presentando un trabajo dispendioso debido a su largo proceso de inspección; su papel es generar en cada uno de los predios interferidos en la nueva vía una investigación expresada e identificada en áreas de cultivo, de lote, de construcción, entre otros y así poder generar una oferta de compra a partir del avaluó comercial.

La herramienta clave para la realización del proyecto está enfocada al levantamiento de información de uso del suelo mediante técnicas fotogramétricas en los procesos de gestión predial, optimizando nuevas tecnologías que podrían ser útiles en ella misma.

Se propone el uso de aeronaves remotamente tripuladas (ART) para la identificación del predio, considerando que este es un sistema al cual se está dando un nuevo enfoque a través de la siguiente investigación, con la finalidad

⁴Ministerio de Hacienda y Crédito Público. (26 de 12 de 1983). Decreto 3496 de 1983. Obtenido de

http://www.igac.gov.co/wps/wcm/connect/f6fe850048eda368a014edc1693f1116/decreto3496de 1983.pdf?MOD=AJPERES

de determinar áreas, realizar una inspección del terreno, establecer el uso del suelo, entre otras funciones que brindan la toma de fotografías aéreas. La implementación de este sistema genera menor tiempo en los levantamientos del terreno, mayor precisión en las áreas y es importante tener en cuenta que es una técnica la cual puede ser ágil y eficiente ya que las imágenes brindadas mediante las aeronaves remotamente tripuladas son llevadas a oficina con el objetivo de que tengan un post-proceso y se determine con precisión la información capturada en campo.

Es importante conocer la clasificación de suelo y el tipo de zona que se encuentra en lugar del proyecto debido a que se realizará un avaluó rural para cada predio, como lo dice el artículo 33 capítulo IV de la Ley 388 de 1997 "Suelo rural. Constituyen esta categoría los terrenos no aptos para el uso urbano, por razones de oportunidad, o por su destinación a usos agrícolas, ganaderos, forestales, de explotación de recursos naturales y actividades análogas"⁵

-

⁵CANO, Andres Mauricio y OBANDO, Andres Ivan;. (2015). Propuesta metodológica para la gestión predial para predios afectados por la ejecución de obras de infraestructura vial. Trabajo de grado. Bogotá D.C.: Universidad Distrital Francisco Jose De Caldas Facultad De Ingeniería.150 p.

5. MARCO REFERENCIAL

5.1 MARCO CONCEPTUAL

Para generar un mejor país es importante tener un desarrollo de las vías tanto de segunda generación como las vías 4G, por medio de las cuales se comunican distintos lugares del país; es debido al confort que estas mismas brindan, teniendo en cuenta estos aspectos y beneficios para los usuarios. Sin embargo, la adquisición de predios afectados por el proyecto hace que la planificación se pueda ver obstaculizada por lo anterior, es por esta razón que se implementó un plan de investigación basado en el proceso de gestión predial el cual resulta fundamental en el momento del diseño y la planeación de un proyecto como lo es una vía.

Cuando se trata de la construcción de una vía de cuarta generación, quiere decir que se trabaja sobre una vía ya construida y se realiza una ampliación de la misma para generar mejor flujo vehicular y mayor seguridad, por lo cual se requiere adquirir las áreas de los predios en reserva para la futura ejecución del proyecto. Es aquí donde tiene un papel fundamental el proceso de gestión predial donde se determina la cantidad de predios y el área del suelo de cada uno de ellos para la realización del avaluó rural sobre el cual se realizará la oferta de compra de los predios que se verán afectados en el desarrollo del proyecto.

5.1.1 Gestión predial

Frecuentemente, para la buena ejecución de una obra vial se requiere comprar una casa, local, lote o bodega que sea de propiedad privada al estar en la zona de intervención del proyecto. El sistema de gestión predial se enfoca en las técnicas, requisitos y parámetros que se deben tener en cuenta para la obtención de los predios. Este sistema es realizado con el propósito de ver la disponibilidad física y jurídica de las fajas de terreno. Para los proyectos viales la gestión predial se generaliza en la adquisición del área afectada que comprende el nuevo proyecto vial. EL buen desarrollo de dicha técnica se

centra en 4 pasos importantes que son: Registro topográfico, estudio de títulos, gestión social y el avaluó comercial.⁶

5.1.2 Reconocimiento predial

Este proceso inicia en la obtención de los diseños preliminares otorgados por la Agencia Nacional de Infraestructura (ANI), este diseño se debe sobrepone en el plano catastral del municipio de Flandes. Los predios localizados al interior del perímetro rural definido y aprobado por el consejo municipal que tiene por objeto identificar sus aspectos físicos y jurídicos. Se solicita los documentos de cada predio afectado, donde se acrediten el tipo de tenencia que posee cada predio, estos documentos iníciales para la investigación catastral pueden ser una copia de la escritura, recibo de impuesto predial, folio de matrícula inmobiliaria, documentos de compraventa o copia de resolución de adjudicación. Levantamiento de información jurídica.⁷

5.1.3 Ficha predial

La elaboración de planos y fichas técnicas comprenden la ficha predial, esta ficha es la primera etapa que se necesita para poder adquirir los predios que son afectados por la vía. Este documento consigna la información física, jurídica y económica de los predios, este proceso no genera inconvenientes que retrasen la etapa de ejecución de la obra.⁸

5.1.4 ART

Las ART (aeronaves remotamente tripuladas) son una herramienta que puede ser utilizada en los procesos de gestión predial, la cual consiste en captura de

-

⁶Ministerio de transporte, Instituto Nacional de Vías. (2015). Apendice predial. Obtenido de http://fondoadaptacion.gov.co/download/APENDICE%20E_FA-IC-011-

²⁰¹⁵_Gesti%C2%A2n%20Predial%20Definitivo.pdf.

⁷CODAZZI, I. G. (2012). Manual de reconocimiento predial. Obtenido de http://www2.igac.gov.co/igac_web/UserFiles/File/Catastro/manualreconocimiento.pdf

⁸CANO, Andres Mauricio y OBANDO, Andres Ivan;. (2015). Propuesta metodológica para la gestión predial para predios afectados por la ejecucion de obras de infraestructura vial. Trabajo de grado. Bogotá D.C.: Universidad Distrital Francisco Jose De Caldas Facultad De Ingeniería.150p.

imágenes aéreas, donde se puede determinar la extensión y el uso del suelo de cada uno de los terrenos sobre el cual se realiza una fotografía. La georreferenciación de las mismas se da con la ayuda de un GPS adaptado en el dron y este suministrara información a partir de coordenadas. El post-proceso permitirá obtener una imagen orto rectificada sobre la cual se determinarán áreas correspondientes a usos del suelo con la precisión topográfica requerida.⁹

5.1.4.1 Imágenes aéreas

Las imágenes aéreas contemplan el proceso de toma de fotografías, clasificación de campo, foto control, Aero triangulación, restitución, edición, salida final y precisión; estas imágenes se dan en espacio-tiempo, no se necesita de estar en el terreno para generar un levantamiento del terreno y determinar el área del predio.¹⁰

5.1.5 Levantamiento estación total

El modo de operar una Estación Total es similar al de un teodolito electrónico, se comienza haciendo estación en el punto topográfico y luego se procede a la nivelación del aparato. Para iniciar las mediciones es necesario orientar la Estación Total previamente, para lo cual se requiere hacer una estación o más en diferentes puntos con las coordenadas conocidas o supuestas y conocer un azimut de referencia, el cual se introduce mediante el teclado.¹¹

5.1.6 Levantamiento GPS

Existen diferentes métodos con el sistema de posicionamiento global (GPS) cada uno depende de la capacidad del receptor y el tipo de levantamiento que se realizará, pero todos se basan en mediciones de fases de la onda portadora y utilizan técnicas de posicionamiento relativamente parecido, es decir, que dos o más recetores ubicados en estaciones diferentes hacen observación

⁹ZAMORA, Ramón. (Agosto de 2015). El uso de drones en la gestión urbana. Obtenido de http://blogs.iadb.org/ciudadessostenibles/2015/08/28/drones/ ¹⁰lbíd.

¹¹PACHAS, L. Raquel (Octubre 02 de 2009). El levantamiento topográfico: uso del Gps y estación total.Obtenido de: http://www.saber.ula.ve/bitstream/123456789/30397/1/articulo3.pdf

simultanea de varios satélites. Los satélites de GPS transmiten señales consecutivamente, pero si estas señales fueran recolectadas continuamente por los receptores se obtendría un volumen de datos muy alto, por lo cual los receptores se instalan para obtener muestras de los datos el cual se denomina velocidad de época, con el propósito de obtener las coordenadas del sitio.¹²

5.1.7 Teledetección

Se basa en la captura de información territorial pequeña o a gran escala por medio de radiación electromagnética la cual captura documentación topográfica (planimetría), de igual manera consiste en el uso de sensores para la adquisición de fotografías inclusive de áreas peligrosas o áreas inaccesibles¹³

5.1.8 Orto foto

Consiste en una impresión fotográfica en la que cada elemento de la imagen aérea se proyecta individualmente con el fin de obtener una escala uniforme, por lo cual las distorsiones causada por la no verticalidad y el relieve del terreno es eliminado. Se utiliza en todas las actividades donde se emplean fotografías aéreas y cartografía logrando elaborar con facilidad una recopilación de los cambios que presenta un área determinada.¹⁴

5.1.9 Foto control

Se determinan a partir de las coordenadas horizontales y verticales que se capturan con el método topográfico de GPS las cuales se clasifican a partir del tipo de información, presentación y determinación de sus coordenadas.¹⁵

¹²WOLF, R. Paul y GHILANI, D. Charles. (2008). Topografía (Vol. undecima edición). México: Alfaomega grupo editor, 952 p.

¹³A., Arozarena Villar. (2010). Teledetección y sistemas de tratamiento digital de imagenes. Obtenido de http://ocw.upm.es/ingenieria-cartografica-geodesica-y-fotogrametria/topografia-cartografia-y

geodesia/contenidos/TEMA_11_FOTOGRAMETRIA_Y_TELEDETECCION/Teledeteccion/microsoft-word-teledeteccion_y_sist_tratamiento_digital_imagenes.pdf. 42p.

¹⁴lbíd.

¹⁵Científicos del suelo y Cartógrafos. (2001). Interpretación de fotografías aéreas. México: Soffer, s de R.L.

5.1.10 Restitución

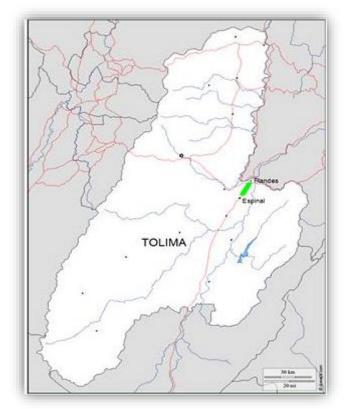
Es el proceso fotogramétrico por el cual se transforma la proyección central de la fotografía a una proyección ortogonal con el objetivo de eliminar las distorsiones, su finalidad es localizar y restituir de una forma precisa las características geométricas como lo será forma, dimensión y ubicación de un objeto a partir de dos o más imágenes.¹⁶

5.1.11 Georreferenciación

Para la siguiente investigación se utilizó el sistema de georreferenciación MAGNA (Marco Geocéntrico Nacional de Referencia) inicio a partir de las estaciones SIRGAS el cual determina la red básica GPS por lo cual se denomina convencionalmente MAGNA – SIRGAS. MAGNA está conformado por aproximadamente 70 estaciones de GPS de las cuales 6 son de funcionamiento continuo, 8 corresponden a vértices SIRGAS y 16 son la red geodinámica CASA (Central and South American geodynamicnetwork), su precisión está en el orden de (2mm – 7mm), su exactitud vertical se encuentra cerca de 2cm y la vertical en 6cm. Cada predio tiene ubicación geográfica y una extensión especifica que permite situarlos en la superficie de la tierra. Esta georreferenciación brindara la capacidad de localizar de manera precisa las entidades geográficas de cada predio. 17

5.2 MARCO GEOGRÁFICO

El área geográfica en el cual se realiza la investigación, se desarrolla en el departamento del Tolima, en los municipios de Flandes y Espinal. El tramo presenta una longitud igual a 8,195 kilómetros; aquél se desarrolla prevalentemente sobre territorio plano.


¹⁶Fotogrametría aérea, trazado de mapas a partir de fotografías aéreas. (Febrero de 2014). Obtenido de

http://www.catalonia.org/cartografia/Clase_07/Fotogrametria/Fotogrametria_index.html#restitucion

¹⁷Instituto Geográfico Agustín Codazzi. (Mayo de 2004). Tipo de coordenadas manejados en Colombia. (L. S. Rodriguez, Ed.) Obtenido de

http://www.igac.gov.co/wps/wcm/connect/facf7c80469f7c2eb03eb8923ecdf8fe/tipos+de+coorde nadas+11.pdf?MOD=AJPERES

Figura 2 Mapa geográfico de la vía de estudio

Fuente. https://es.wikipedia.org/wiki/Plantilla:Mapa_de_localizaci%C3%B3n_de_Tolima

Las preexistencias de la nueva sede del proyecto está dispuesta en el margen izquierdo de la sede actual para el primer tramo hasta los 560 metros (y en este sentido en correspondencia con la plaza del peaje existente); sucesivamente la duplicación de la sede acaece sobre el margen derecho de la sede hasta la progresiva de 5, 610 kilómetros; el último tramo de duplicación (hasta el intercambiador existente de San Rafael) acaece sobre el margen izquierdo de la sede actual. Esta escogencia permite la no interferencia en absoluto con la estación de servicio presente, en correspondencia con la conexión San Rafael.

La duplicación del itinerario termina en la conexión del intercambiador San Rafael. En particular la vía directa al norte pasa de dos a un solo carril por sentido de marcha en correspondencia de la rampa directa a Melgar y sucesivamente a Bogotá; la vía sur pasa de un carril por sentido de marcha a dos carriles en correspondencia de la inserción de la rampa proveniente de lbagué.

Figura 3 Ubicación de la nueva vía de 4G

Fuente: Google Earth

El abscisado de los predios comienza desde el Intercambiador San Rafael (km0+00m), estas coordenadas horizontales expresan la distancia que hay desde el inicio de la doble calzada hasta los puntos existentes donde empiezan y terminan cada predio.

Tabla 1 Abscisado de los predios

PREDIO	ABSCISA		
FREDIO	INICIO	FIN	
Nº 1	Km 1 + 194,60 m	Km 2 +103,19 m	
Nº 2	Km 2 + 103,19 m	Km 2 + 177,62 m	
Nº 3	Km 5 + 764,03 m	Km 5 + 813,62 m	
Nº 4	Km 6 + 881,06 m	Km 6 + 954,69 m	

Fuente. Elaboración propia

De acuerdo a la tabla 1, se identifican cada uno de los cuatro predios en el mapa de Google Earth, esta localización genera la oportunidad de analizar la extensión de la vía a estudiar y el recorrido que se debe realizar para la ejecución de los levantamientos convencionales y el levantamiento ART.

Figura 4 Abscisado de los predios seleccionados

Fuente: Google Earth

5.3 MARCO LEGAL

La gestión Predial se sustenta en el siguiente marco jurídico:

Tabla 2 Marco jurídico gestión predial

	NORMA	APLICACIÓN
1	Decreto 1420 de 1998.	Señala las normas, procedimientos, parámetros y criterios para la ejecución de los avalúos por los cuales se determina el valor comercial de los bienes inmuebles.
2	Ley de infraestructura 1682 de 2013	Es un sistema de movilidad incorporado por un conjunto de bienes tangibles, intangibles y aquellos que se encuentren relacionados con este, el cual está bajo la vigilancia y control del Estado.
3	Circular 002 de la Aeronáutica Civil Colombiana	Amplía la información y entrega instrucciones de cumplimiento en referencia a los parámetros de Aeronavegabilidad y Operaciones necesarias para obtener su debido permiso.
4	Ley de Reforma Urbana o Ley 9a. de 1989, Capítulo III.	Señala el procedimiento para la adquisición por enajenación voluntaria y por expropiación, con el fin de dar los lineamientos para la adquisición de predios.
5	Ley 105 de 1993, artículos 34 y 35.	Fundamento de los avalúos para predios afectados por la construcción, rehabilitación o mejoramiento de una vía.
6	Ley 388 de 1997, o Ley de Ordenamiento.	Reforma y complementa la Ley 9ª de 1989 y 1 señala en su Capítulo VII las modificaciones al procedimiento de enajenación voluntaria y a la expropiación por vía judicial.
7	Resolución 620 de 2008 IGAC.	Se establece la metodología para realización de los avalúos ordenados por la ley 388 de 1997.
8	Resolución INVIAS No.03157 del 26 de julio de 2004.	Se establecen los criterios para la elaboración e implementación de planes de gestión socio predial con miras a compensar los impactos sociales generados en la adquisición de áreas requeridas para la ejecución de proyectos a cargo del Instituto Nacional de Vías (INVIAS).
9	Resolución N ^a 001843 del 23 de abril de 2008.	Se establecen los criterios para la Elaboración e Implementación de Planes de Gestión Socio- predial con miras a compensar los impactos

		sociales generados en la adquisición de áreas para la ejecución de proyectos a cargo del Instituto Nacional de Vías (INVIAS) y se hace una delegación.
10	Resolución Nº 070 de 2011.	Por la cual se reglamenta técnicamente la formación catastral, la actualización de la formación catastral y la conservación catastral.
11	Resolución Nª 64 DE 1994.	La cual consiste en las especificaciones técnicas mínimas que deben cumplir las personas naturales o jurídicas para realizar trabajos fotogramétricos y cartográficos.
12	Ley 388 de 1997, Capítulo VII	Se decreta que las entidades territoriales, áreas metropolitanas y asociaciones de municipios obtendrán por enajenación voluntaria la expropiación de inmuebles para fomentar las actividades previstas en obra.

Fuente. Elaboración propia

6. MARCO METODOLÓGICO

6.1 ENFOQUE INVESTIGATIVO

La metodología de esta investigación se desarrolla a partir de un enfoque cuantitativo teniendo en cuenta que se realizará un conjunto de pasos a seguir como lo será el estudio de los datos numéricos obtenidos en campo y el análisis que se ejecutará a cada uno de los métodos topográficos aplicados al levantamiento de información de predios involucrados, obteniendo una cantidad determinada de variables como lo será el área del predio, tiempo de ejecución, trabajo de campo, trabajo de oficina, restitución de imágenes e información ocular, la cual deberá ser apreciada en el sistema de gestión predial para los terrenos afectados con el fin de tener una eficaz adquisición de los mismos.

6.2 TIPO INVESTIGACIÓN

El tipo de investigación que se ejecutará en el proyecto investigativo es de carácter descriptivo – comparativo debido a que se seleccionan una serie de conceptos o variables donde se mide cada una de ellas independientemente, obteniendo datos de cada uno de los métodos ya sea por medio de levantamientos convencionales (estación total y navegador GPS) o por medio de imágenes capturadas mediante (aeronaves remotamente tripuladas) relacionando la eficiencia que representa la metodología aplicada en el momento de realizar la gestión predial.

6.3 POBLACIÓN Y MUESTRA

6.3.1 Población

En ésta investigación se generan dos características esenciales para la determinación de la población y se componen de:

- Espacio: El área limitada del corredor vial en estudio es de 2.500.000 m², esta zona incluye 50 predios afectados por la nueva vía y con una longitud de 8.195 m desde el intercambiador San Rafael hasta el municipio de Espinal.
- Cantidad: Número de unidades y tamaño de la muestra que se estudiará, tiene una extensión de 50 propiedades, de los cuales 13 cuentan con vivienda construida, según información obtenida por el IGAC.

6.3.2 Muestra

La determinación de la muestra se ejecutó por el método aleatorio por conveniencia, seleccionando 4 de los 50 predios afectados. Esta selección se genera por la conveniente accesibilidad al terreno, debido a que estos se encuentran habitados y esto conlleva a la proximidad de los habitantes del predio con el investigador.

6.4 DEFINICIÓN Y OPERACIONALIZACIÓN DE VARIABLES

6.4.1 Levantamiento topográfico

Es el conjunto de operaciones encargado de medir extensiones de tierra, tomando los datos necesarios para que la información obtenida sea representada sobre un plano a escala, con la finalidad de medir distancias horizontales y verticales entre puntos y objetos sobre la superficie terrestre. De la misma manera medir ángulos entre líneas y establecer puntos por medio de distancias y ángulos.¹⁸

En los levantamientos topográficos es de gran importancia el insumo que brinda la georreferenciación debido a que por medio de esta se realiza la localización precisa en cualquier mapa de cualquier lugar de la superficie terrestre, teniendo en cuenta su aplicabilidad tanto en la topografía que

¹⁸TORRES, Nieto ÁLvaro y BONILLA, Villate Eduardo. (1968). Topografía (Vol. libro 2, toma 8). Bogotá: Norma. 405 p.

proporciona los datos que permiten aplicar los sistemas de georreferenciación geodésicos como en la cartografía el cual desarrolla sistemas de proyección los cuales permiten referir sobre cualquier plano de la superficie según su posición geográfica.

Tabla 3 Especificaciones estación total

ESPECIFICACIONES CaracterísticasTKS-202. Alcance con un prisma 2,000 mts. Alcance con tres prismas 2,700 mts. Precisión en distancia ±(2mm+2ppmxD) m.s.e. Aumentos en telescopio 30x.

http://www.topoequipos.com/topoequipos2.0/estaciones-totales/estacion-total-gowintks-202-equipo-topografico

6.4.2 Levantamiento GPS

Son métodos y procedimientos de creación de las redes de puntos de apoyo, que sirven como base planimetría y altimétrica para los levantamientos topográficos y realización de los mapas.

En el mapa se representa toda la superficie terrestre o una parte de ella, teniendo en cuenta la curvatura de la tierra, se requiere el GPS en zonas rurales debido a las grandes extensiones que es necesario levantar. Cuando los satélites GPS están orbitando cada uno trasmite continuamente una señal única en dos frecuencias portadoras, a partir de la información de las señales brindadas por los satélites, se determinan las distancias precisas desde los satélites hasta los receptores permitiendo el cálculo de la posición de los receptores los cuales nos brindan las coordenadas del punto donde estemos situados.¹⁹

Tabla 4 Especificaciones navegador GPS

ESPECIFICACIONES

Mapa base mundial.

Pantalla de 2,2"" de 65.000 colores, que puede leerse con la luz del sol.

Satélites GPS y GLONASS para adquirir la posición de forma más rápida.

Geocaching sin papeles.

Autonomía de la batería de 25 horas con 2 pilas AA.

Fuente. https://buy.garmin.com/es-AR/AR/entrenando-explorando/descontinuados-fitness/etrex-20/prod87771.html

6.4.3 Levantamiento ART

El levantamiento topográfico de una aeronave remotamente tripulada (ART) o dron consiste en una fotografía aérea con la finalidad de recubrir totalmente el área de estudio con líneas o fajas de vuelo, estas líneas de vuelo se orientan con respecto al terreno. En cada línea de vuelo se obtienen secuencial y longitudinalmente todas las fotografías necesarias del sitio, sobreponiéndose una sobre el área de la anterior un 60% aproximadamente, entre las líneas de vuelo existe un traslape llamado sobre posición lateral entre fotografía.

La restitución de las imágenes consiste en la conversión de la proyección central de la fotografía aérea a la proyección ortogonal del mapa cada una con

¹⁹WOLF, R. Paul. y GHILANI, D. Charles. (2008). Topografía (Vol. undecima edición). México: Alfaomega grupo editor. 913P.

su debida escala y posición. La restitución de las fotografías se puede clasificar de las siguientes dos maneras:

- Según el propósito para el cual están diseñando
- Según el sistema de proyección

De igual manera es importante conocer la orientación de la imagen con la finalidad de realizar una reconstrucción real del modelo siguiendo 3 criterios básicos como lo será la orientación interna que consiste en la reconstrucción del haz de rayos que dio origen independiente a cada fotografía, la orientación relativa se basa en dar a dos proyectores la misma posición relativa que tenía la cámara en dos exposiciones consecutivas y finalmente orientación absoluta la cual brinda la escala y nivela el modelo en relación con los puntos de control establecidos en el mapa base.²⁰

Para la utilización de drones en un levantamiento topográfico, el instrumento será manipulado por personal capacitado con el fin de obtener las áreas de los predios, igualmente mediante las imágenes obtenidas se podrá clasificar por medio de colores los cuales nos indican el tipo de cultivo que se encuentra situado en el terreno sobre el cual se está realizando la gestión predial.

Tabla 5 Especificaciones ART

ESPECIFICACIONES

Altura máxima de 400 pies (120 m).

Posee una autonomía de vuelo de 23 minutos, un rango de 3,5 kilómetros, transmisión en vivo directo HD y con 4 motores o multirrotores.

Proporciona un despegue y aterrizaje vertical reduciendo el espacio requerido en tierra para su operación.

Cámara Sony NEX-5 profesional, resoluciones de 4608 x 3456.

Longitud focal de la cámara de 15 mm, tamaño del pixel es de 3.76 x 3.76 um.

Fuente. Elaboración propia

²⁰HERRERA, Herrera Bernard. (1987). Elementos de fotogrametría. México: Limusa S.A. 200p.

6.5 TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN Y ANÁLISIS DE INFORMACIÓN

Para este caso de estudio se propone una metodología novedosa con el objetivo de dar unos lineamientos a seguir en la gestión predial a partir de la cartografía, brindando información sobre el proceso y generando beneficios para los constructores, el estado y la comunidad habitante. De la misma manera identificar las variables y las partes involucradas en el proceso.

Para las técnicas de los levantamientos convencionales (estación total y navegador GPS) y el levantamiento con aeronaves remotamente tripuladas (ART), es necesario tener en cuenta los implementos que se deben usar en un levantamiento con estación total Gowin TKS 202 con precisión de 0°0'2" y navegador GPS Garmmin SatNav de exactitud de ±3 m, lo cual tendrá costos de transporte de cada uno de los elementos, además de esto es importante el recurso humano en campo corroborando los datos obtenidos y el buen manejo del equipo para sus correctos resultados, a diferencia del levantamiento que se propone, el cual es novedoso para zonas rurales y será necesario el uso de drones y personal capacitado para lograr una mayor eficiencia, adicionalmente cada método demanda diferentes recursos como lo será recurso humano, trabajo de campo y de oficina, características del terreno obtenidas por cada método y que tan precisa es la información que se adquirió de cada uno generando una desigualdad de ejecución en cada procedimiento.

Con respecto a los métodos convencionales (estación total y navegador GPS) tardan más tiempo en procesar los datos obtenidos debido a que se deben hacer los levantamientos de los puntos logrando coordenadas para cada uno de ellos, recolectando información que se almacenara en carteras de campo para después desarrollar el cálculo del error determinando el área del predio y con estos puntos poder realizar los planos en el software AutoCAD y tener una imagen real del terreno al cual se le realizó el levantamiento, a diferencia de los métodos anteriores la captura de información con aeronaves remotamente tripuladas (ART) se obtienen imágenes áreas del terreno las cuales serán procesadas por medio de AutoCAD para después realizar un post-proceso de digitalización en el software Arcgis generando una georreferenciación, teniendo en cuenta que a cada fotografía brindada por el ART será necesario realizar una restitución para la correcta información, brindando la posibilidad de medir áreas mediante el software anteriormente descrito, de la misma manera se determinaran los usos del suelo, tipos de cultivos, tiempo de ejecución y el personal necesario para la captura de la información.

6.6 FASES DE INVESTIGACIÓN

6.6.1 Fase I. Método Convencional

FASE I

Determinar las áreas afectadas a través de levantamientos topográficos convencionales (estación total y navegador GPS).

Tabla 6 Actividades fase I

l abla 6 Actividades fase I		
Actividad 1.1		
Inventario preliminar con el objetivo de definir usos del suelo a partir de información secundaria	Caracterizar el uso del suelo para cada uno de los diferentes predios afectados definiendo el área del terreno como zona de cultivo, construcción, residencial o industrial.	
	Actividad 1.2	
Visita de campo	Definiendo el área del uso del suelo, se realiza una inspección con el fin de visualizarlos predios afectados en el momento de la construcción de la vía de cuarta generación (4G). Por medio de la visita de campo se hará un reconocimiento de los predios, examinando la visibilidad que pueda tener el equipo topográfico (estación total) en cada uno de los deltas, para el debido levantamiento de detalles y linderos que comprendan los terrenos. Con la visita de campo se determinó el tipo de trabajo que se llevará a cabo para cada uno de los predios; se estableció que por la extensión y cantidad de detalles que se encuentran en el terrenos N°1, N°2 y N°4 se ejecutará una	
	poligonal cerrada asegurándonos una buena representación cartográfica de la zona levantada, sin desestimar la precisión y exactitud con que se debe trabajar; mientras que para el predio N° 3,se ejecutara el método de radiación simple, ya que	

	este cuenta con un área relativamente pequeña,
	una visualización fácil para los detalles.
	Actividad 1.3
Levantamientos convencionales	Se estableció en cada uno de los predios un delta por el método convencional (estación total y navegador GPS), para poder realizar una serie de etapas básicas y así determinar el área total del mismo y poder concluir el área que será afectada por la nueva calzada. El levantamiento por estación total, es un sistema por el cual se miden distancias y ángulos garantizando un nivel mayor de precisión, de la misma manera, la georreferenciación en caso de utilizar estación total o teodolito, se realizará como mínimo con receptores GPS con precisión de punto sub-métrico (dispositivo que captura señales del sistema satelital artificial) con el fin de garantizar la precisión al tomar las coordenadas para el levantamiento, obteniéndose con relación a otro punto con coordenadas oficiales realizando captura simultánea de información.

Fuente. Elaboración propia

6.6.2 Fase II. Método ART

FASE II
Evaluar las áreas involucradas a partir de imágenes capturadas mediante (ART).

Tabla 7 Actividades fase II

	Actividad 2.1
Definir usos del suelo	Caracterizar el uso del suelo para cada uno de los diferentes predios afectados definiendo el área estudiada mediante los levantamientos topográficos

	como zona de cultivo, ganadería, invernadero o construcción.
	Actividad 2.2
	Las aeronaves remotamente tripuladas están conformadas por un vehículo aéreo formado por una estación de control la cual recibe instrucciones de vuelo, capturando información fotográfica con el fin de determinar la magnitud del predio teniendo en cuenta el trabajo de campo y de oficina para obtener la información.
Levantamiento ART	Por medio de la estación de control se guía la aeronave, el piloto será el encargado de ejercer el control del vuelo y la generación de las fotografías del predio, de igual manera el personal capacitado realizará la georreferenciación con el fin de generar una línea de vuelo y abarcar toda la extensión del terreno, con el propósito de obtener información para determinar la magnitud del mismo.
	Uno de los aspectos más positivos de las fotografías que se obtienen por medio de las aeronaves remotamente tripuladas es que se puede definir qué tipo de cultivo que está situado en el predio.
	Actividad 2.3
Correcciones de imágenes capturadas	Por medio de la fotogrametría se obtendrán imágenes aéreas con el propósito de hacer una restitución de las mismas y generar los mapas de los predios de investigación, obteniendo imágenes que se clasificarán mediante colores los cuales determinarán el uso del suelo, produciendo las correcciones de las fotografías que cubren la zona de los predios afectados por la vía 4G, con el fin de conseguir un mapa continuo de un área determinada.

El proceso de obtención de cada una de las imágenes aéreas se realizará por medio del software Agisoft PhotoScan (procesador de imágenes tomadas métricas y no métricas)para obtener las imágenes en campo de forma digital y entrelazadas con el propósito de restituirlas eliminando las distorsiones y suprimiendo los errores que se generan en el vuelo, con el objetivo de localizar de forma precisa las características geométricas como lo será forma, dimensión y ubicación de uno o varios objetos, y la respectiva generación del área.

Fuente. Elaboración propia

6.6.3 Fase III. Comparativo de datos

FASE III

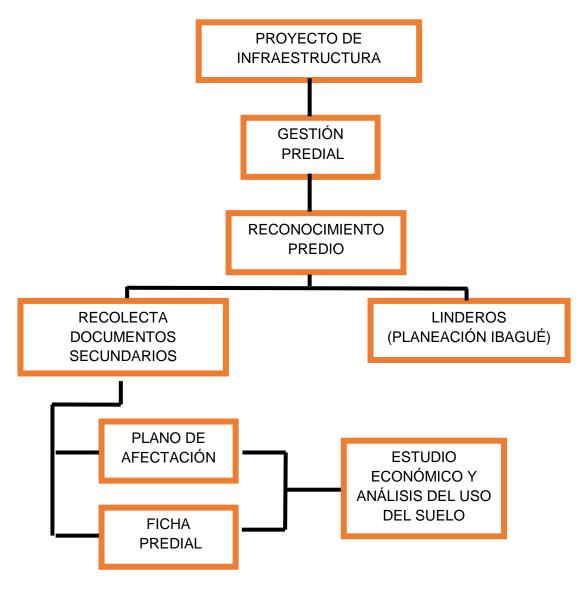
Comparar los métodos de captura de imágenes con aeronaves remotamente tripuladas (ART) y los levantamientos convencionales.

Tabla 8 Actividades fase III

Actividad 3.1	
Recolección de datos	Mediante estudios realizados por medio de las diferentes técnicas, se obtienen coordenadas Norte y Este, sobre los cuales se hará una recolecta de los resultados obtenidos, realizando el cálculo del error para cada uno de los predios y así obtener la información real de los métodos utilizados.
Actividad 3.2	
Análisis de datos	Una vez obtenidos los datos de los equipos utilizados, se realiza una comparación de la información recolectada como lo será el área del predio, tiempo de ejecución en campo y en oficina, recurso humano, equipo y precisión de cada uno de los métodos. En el método con estación total se puede comprobar que la información brindada tiene un

margen de error menor comparado con los otros métodos, de igual manera se observa que el acceso a diferentes puntos con estación total es más complejo; mientras que con navegador GPS, la información se puede obtener de forma más rápida debido a la manejabilidad del dispositivo, sin embargo, es indispensable la presencia de al menos 3 satélites ubicados en la zona para que la precisión obtenga un valor de ± 3metros, por otra parte la información con ART es más eficiente en zonas despejadas pero en lugares donde se encuentre construcción bajo la vegetación el dron no podrá capturar esta información por lo cual es necesario el uso de estación total en puntos como estos.

El estudio realizado es demostrar las diferencias de tiempo, recurso humano, precisión, elementos positivos y negativos de cada uno y los hallazgos que generan los métodos con el propósito de optimizar la información en menor tiempo.


Actividad 3.3

La comparación de los métodos de acuerdo a la eficiencia se da respecto al tiempo que se puede demorar el inicio de un proyecto de 4G en la fase de gestión predial, y que ayuda se puede generar con la utilización de los métodos.

Análisis de resultados

Como bien se sabe las vías hacen parte del desarrollo de un país donde se pretende la ampliación de las vías, el aumento de estas invade terrenos de zona residencial generando procesos de gestión predial. Es por este motivo que se ejecutará una cadena de matrices sintetizando la información obtenida demostrando el tiempo que puede llegar a tardar el proceso de gestión predial mediante los diferentes métodos y proponiendo el uso de las aeronaves remotamente tripuladas para optimizar los procesos prediales.

Gráfico 1 Actividades del proyecto del sistema de gestión predial

7. ANÁLISIS DE RESULTADOS

7.1 FASE I. MÉTODO CONVENCIONAL

Una vez realizada las actividades propuestas en el numeral 6.6.1 (Fase I - método convencional), se lleva a cabo el tratamiento correspondiente para el análisis del inventario preliminar, con el objetivo de definir usos del suelo a partir de información secundaria, visita de campo y los levantamientos convencionales.

El método convencional está enfocado en el levantamiento topográfico por los sistemas de estación total y navegador GPS para cuatro (4) predios seleccionados. A continuación, se muestra la información catastral de cada uno de los predios, tomada por el Instituto Geográfico Agustín Codazzi (IGAC) adjuntando a cada una de las tablas la inspección ocular realizada en campo, para así determinar la complejidad del levantamiento (Ver tablas 6, 7, 8 y 9).

Se presentan cada uno de los predios con su respectiva ubicación, extensión en planta y una fotografía para visualizar e identificar sus componentes para el momento de hacer los levantamientos convencionales (estación total y navegador GPS).

Tabla 9 Ficha predial predio N° 1

PRE DIO	DEPAR TAMEN TO	MUNI CIPIO	LONG ITUD	LATIT UD	CÓDIGO PREDIAL	MATRICULA INMOBILIARI A	ÁREA DEL TERRENO	ÁREA CONSTRU IDA	DESTINO ECONÓMIC O	INSPECCIÓ NOCULAR
Nº 1	Tolima	Fland es	70°50' 17.60"	4º142' 15.12"	7327500010000 0003011200000 0	1129348	0 ha, 2250 m2	50.0 m2	Agropecuari o	Vivienda

Fuente. Elaboración propia

Fuente. Google Earth y elaboración propia

Tabla 10 Ficha predial predio N°2

PR EDI O	DEPART AMENT O	MUNI CIPI O	LON GITU D	LATI TUD	CÓDIGO PREDIAL	MATRICULA INMOBILIARI A	ÁREA DEL TERRENO	ÁREA CONSTR UIDA	DESTINO ECONÓMIC O	INSPECCIÓNO CULAR
Nº 2	Tolima	Fland es	74°50′ 18.77 "	4º12' 27.81 "	7327500010000 0003025600000 0	357-18487	0 ha, 2795 m2	69.0 m2	agropecuari o	Vivienda, valla publicitaria, vivero

Figura 6 Inspección ocular predio N° 2

Fuente. Google Earth y elaboración propia

Tabla 11 Ficha predial predio N° 3

PR EDI O	DEPART AMENTO	MUNI CIPIO	LONG ITUD	LATI TUD	CÓDIGO PREDIAL	MATRICULA INMOBILIARI A	ÁREA DEL TERRENO	ÁREA CONSTRU IDA	DESTINO ECONÓMIC O	INSPECCI ÓNOCULA R
Nº 3	Tolima	Fland es	74º51' 13.27"	4º12' 27.81	73275000100000 00202160000000	119217	0 ha, 1658 m2	58.0 m2	Agropecuari o	Vivienda

Fuente: Elaboración propia

Figura 7 Inspección ocular predio N° 3

Fuente. Google Earth y elaboración propia

Tabla 12 Ficha predial predio N°4

PR EDI O	DEPART AMENTO	MUNI CIPIO	LONG ITUD	LATI TUD	CÓDIGO PREDIAL	MATRICULA INMOBILIARI A	ÁREA DEL TERRENO	ÁREA CONSTRU IDA	DESTINO ECONÓMIC O	INSPECCIÓ N OCULAR
Nº 4	Tolima	Fland es	74º51' 30.38"	4º11' 55.36	73275000100000 00201960000000	357-15453	7 ha, 819 m2	0 m2	Recreaciona I	Restaurante

Figura 8 Inspección ocular predio N° 4

Fuente. Google Earth y elaboración propia

En la tabla 13 se detalla el tipo de levantamiento topográfico (estación total o navegador GPS), el tiempo transcurrido para cada predio por levantamiento, el área total del predio y el área construida.

Tabla 13 Cuadro resumen fase I

PDEDIO	TRABAJO DE CAMPO		ÁREA LEVANTADA (m²)		ÁREA CONSTRUIDA (m²)		TRABAJO DE OFICINA		RECURSO HUMANO (PERSONAS)		PRECISIÓN	
PREDIO	Estación total	Navegador GPS	Estación total	Navegador GPS	Estación total	Navegador GPS	Estación total	Navegador GPS	Estación total	Navegador GPS	Estación total	Navegador GPS
N° 1	1 hr 30 min	50 min	2445,94	2487,73	257,75	257,75	2 hras	1 hra	4	1	0°0'9"	± 3 m
N° 2	1 hr 30 min	50 min	2581,61	2445,50	110,90	110,64	1 hra, 30 min	40 min	4	1	0°0'7"	± 3 m
N° 3	1 hr	30 min	1385,77	1331,50	55,00	78,92	1 hra	30 min	4	1	0°0'2"	± 3 m
N° 4	4 hrs 30 min	2 hrs 30 min	9458,16	7496,9311	1046,97	1122,54	3 hras	2 hras	4	1	0°0'4"	± 3 m
TOTAL	8 hrs, 30 min	4 hrs, 40 min	15.871,48	13.761,66	1470,62	1569,85	7 hras, 30 min	4 hrs, 10 min	4	1	$\bar{\mathbf{x}} = 5,5$ "	± 3 m
TOTAL	15 hrs, 10 min		29.633,14		3040,47		11 hrs 40 min		5		-	

El método de levantamiento convencional (estación total y navegador GPS) se desarrolló para la totalidad del área de los lotes No 1, No 2 y No 3, mientras que para el lote No 4 no se realizó el alzado absoluto, ya que al ser un predio extenso solo se ejecutó aproximadamente 1 hectárea, incorporando los 30 metros que se afectan por la nueva calzada.

El levantamiento por el método de estación total interviene por lapsos de tiempo mayores a los de un levantamiento por navegador GPS, estos tiempos se ven influenciados respecto a los cambios de estación (delta), la complejidad de enfocar una vista en el bastón ya sea por distancias largas u obstáculos, y por la cantidad de objetos a levantar (casas, linderos, kioscos, entre otros); el navegador GPS es más útil a la hora de capturarlos elementos (casas, linderos, kioscos, entre otros) y la totalidad del terreno mediante coordenadas sin la necesidad de hacer cambios de estación.

El diseño de los planos porcada uno de los métodos comprende gran complejidad en el momento de ilustrar los datos y el tiempo en ejecutarlo; este trabajo es más extenso para la estación total debido a que se toma un norte arbitrario y se establecen cambios de estación (delta), mientras que para el navegador GPS al tener las coordenadas e incorporarlas en AutoCAD se hace mucho más eficiente el método para dibujar, pero se debe prestar atención al trazar los puntos ya que se debe poseer un dibujo en la cartera de tránsito para recapitular el diseño de cada objeto.

7.2 FASE II. MÉTODO ART

Una vez realizada las actividades propuestas en el numeral 6.6.2 (Fase II - método ART), se llevó a cabo el tratamiento correspondiente para definir usos del suelo, levantamiento ART y las correcciones de imágenes capturadas.

El método ART está enfocado en el levantamiento que se realizó a cuatro (4) predios seleccionados por medio del proceso de fotografías aéreas tomadas a una altura máxima de 400 pies (120 m) por una aeronave remotamente tripulada (ART), el dispositivo utilizado es un Phantom DroneFraDji que posee una autonomía de vuelo de 23 minutos, un rango de 3,5 kilómetros, transmisión en vivo directo HD y con 4 motores o multirrotores (Ver figura 9) la cual proporciona un despegue y aterrizaje vertical reduciendo el espacio requerido en tierra para su operación. El volar a un punto fijo (vuelo estacionario) brinda una mayor maniobrabilidad y precisión de vuelo por su baja velocidad, lo que resulta muy adecuado para inspecciones prediales.

Figura 9 Aeronave multirrotor Phantom DroneFra Dji y cámara Sony NEX-5

Fuente. Fotografía elaboración propia Imagen https://www.taringa.net/posts/info/14527905/Sony-alpha-NEX-una-obra-maestra-review.html

La cámara empleada es una Sony NEX-5 profesional, brinda fotografías con resoluciones de 4608 x 3456, su longitud focal al ser de 15 mm representa una vista muy amplia al terreno, el tamaño del pixel es de 3.76 x 3.76 um una sensibilidad ligeramente mejor a la luz que una geometría convencional, su lente pastel proporciona una película fotográfica equivale al ISO 100 - 25.600, esto quiere decir que cuenta con sensibilidad media (todo terreno), una amplia escala tonal y permiten ampliaciones de hasta 30 cm x 40 cm.

En la tabla 14 se presenta el uso del suelo de cada uno de los predios y la cantidad de construcciones que se encuentran en el sitio.

Tabla 14 Uso del suelo residencial, agropecuario, ganadero y/o comercial

PREDIO	USO DEL SUELO	ÁREA CONSTRUIDA APROXIMADA (m²)	CANTIDAD DE CONSTRUCCIONES		
Nº 1	Residencial - Agropecuaria	260,00	2 casas		
Nº 2	Residencial - Agropecuaria	110,00	3 casas		
Nº 3	Residencial - Agropecuaria	67,00	2 casas		
Nº 4	Residencial - Agropecuaria	1100,00	1 restaurante, 5 quioscos, 1 cabaña		

En la georreferenciación se tomarán los puntos de control establecidos por el método de la estación total (delta A) con un Trimble GNSS(GPS de alta precisión), para así poder asignar dichas coordenadas a la hora de hacer el proceso en oficina.

Una vez establecidos y capturados los deltas principales de cada predio se procede a cargar las coordenadas en el software controlador de vuelo Pix4d. En la configuración de la aplicación se selecciona el tipo de dron que se va a utilizar (PhantomDroneFraDji), en GridMision se establecen los comandos de vuelo que son:

- Velocidad rápida del dron: 10 km/h.
- Angulo vertical: 90°.
- Solapamiento longitudinal: 60% para permitir visión estereográfica.
- Solapamiento transversal: entre 20 y 40% para evitar zonas sin cobertura.
- Altura: 100 m.

Al llenar los campos requeridos el sistema Fix4d genera un tono amarillo (ver figura 10) el cual nos permite trabajar y cubrir el área requerida para los levantamientos prediales.



Figura 10 Comandos de vuelo Fix4d

Fuente. Elaboración propia celular Sony Z3

La planeación de vuelo de la aeronave sobre el terreno, debe hacerse por fajas paralelas y todas a una misma altura, el eje de la línea es la que une los puntos principales de todas las fotografías. Dicho anteriormente los solapamientos longitudinales y los transversales deben generarse de una sobre otra como se muestra en la siguiente figura (ver figura 11).

Pasada 2

Pasada 3

Pasada 4

Pasada 5

Pasada 6

Pasada 7

Foto 1 Foto 2 Foto 3 Foto 4

Figura 11 Proyección de vuelo

Fuente. SANTAMARIA, J y SANZ, T (2011). Fundamentos de fotogrametría [Figura]. Recuperado de: https://dialnet.unirioja.es/descarga/libro/492591.pdf

Antes de iniciar el vuelo se debe revisar en la Aeronáutica Civil Colombiana las pistas que se encuentren en un radio de 5 km, al realizar la debida inspección se halló el Aeropuerto de Flandes; esto influyó en el cambio de modo autónomo (plan de vuelo determinado) a modo manual (plan de vuelo a través de una emisora de radiocontrol).

Para el levantamiento de los predios se realizaron 3 vuelos, de los cuales un vuelo se ejecutó para los predios Nº 1 y Nº 2, esto se generó por motivo que dichos predios tienen el mismo lindero.

Para el proceso de corrección de imágenes, se toma como ejemplo el predio N° 4; en el software Agisot – Photoscan se añaden todas las fotografías que se generaron en el vuelo (131 imágenes), en el centro del programa se muestran las fotografías con su ubicación y nombre (ver figura 12), las coordenadas de posición que se trabajaron para las imágenes de latitud y longitud, del mismo modo los puntos de control que fueron tomados por un receptor Trimble GNSS (GPS) con una precisión de 5 mm a 10 mm.

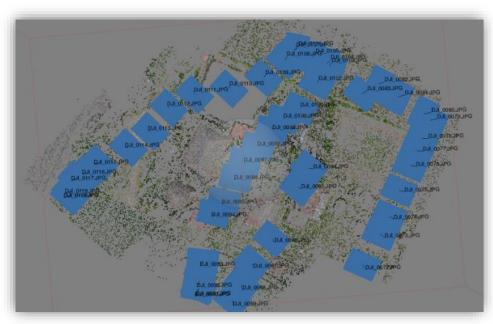


Figura 12 Imágenes añadidas al software

Fuente. Sofware Agisot Photoscan, elaboración propia

Se genera una revisión de las 131 fotografías para determinar en cuales se encuentra el mojón establecido para el levantamiento (delta A), entre más imágenes tengan puntos de control ubicados serán más precisos los resultados finales.

En el proceso de calibración de cámaras se establecen las especificaciones en el software que son: tipo de cámara (lente pastel), valor distancia focal (15 mm) y valores de pixeles (4608 x 3456); con estos requisitos se podrán corregir las fotografías sin ningún inconveniente. La orientación de las imágenes será de

precisión alta y se detectan de 3.000 a 4.000 puntos claves y unitivos que leen como una similitud entre ellos para poder hacer el enlace (ver figura 13).

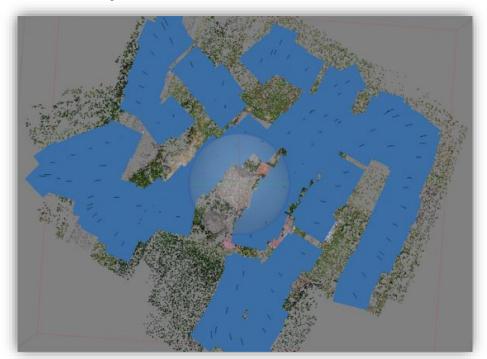
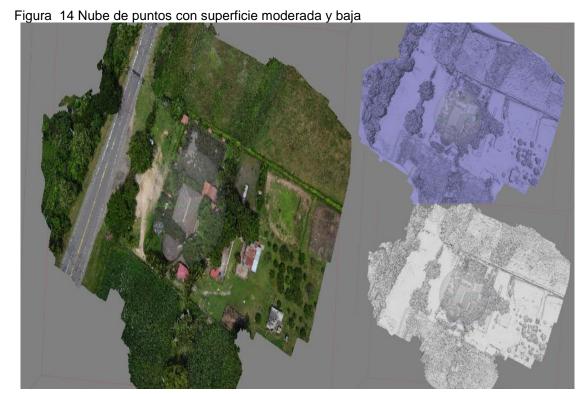
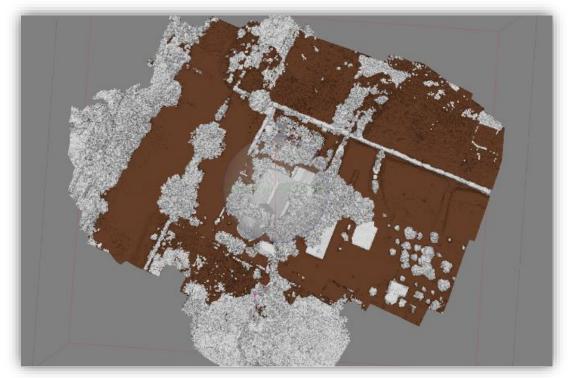



Figura 13 Enlace de imágenes

Fuente. Sofware Agisot Photoscan, elaboración propia

El enlace de las 131 imágenes se produce para generar la nube de puntos densa con especificaciones de calidad alta y su filtración de profundidad (que tan fuerte es el cambio entre cada foto de la nube de puntos) será moderada; se logra determinar que el trabajo da adecuados resultados, tiene una buena densidad de puntos y una malla (tipo de superficie) moderada y debajo relieve.



Fuente. Sofware Agisot Photoscan, elaboración propia

Al tener la triangulación deseada con el programa se exporta la nube de puntos, los modelos y se crean las orto fotos; se trabajó con coordenadas WGS 84/UTM zone 14N (EPSG::32614) para aplicarlos sin inconvenientes con el software AutoCAD.

Continuando en el software Agisoft se ubica dentro de la nube de puntos densa y se observan los detalles mínimos de las fotografías, se clasifica y se ejecuta una depuración dejando únicamente el terreno natural que se encuentra de color café (ver figura 15).

Figura 15 Depuración para terreno natural

Fuente. Sofware Agisot Photoscan, elaboración propia

Para generar una orto foto de buena calidad se necesita depurar y eliminar las partes que se ven borrosas por la falta de datos que se representan en las orillas del terreno.

Fuente. Sofware Agisot Photoscan, elaboración propia

El software Agisoft produce un informe final mostrando en la primera página el levantamiento realizado con una orto foto, la siguiente muestra el traslape de las 131 imágenes enseñando una escala de superposición donde el color azul es el valor más alto y el rojo es el más deficiente (ver imagen 17).

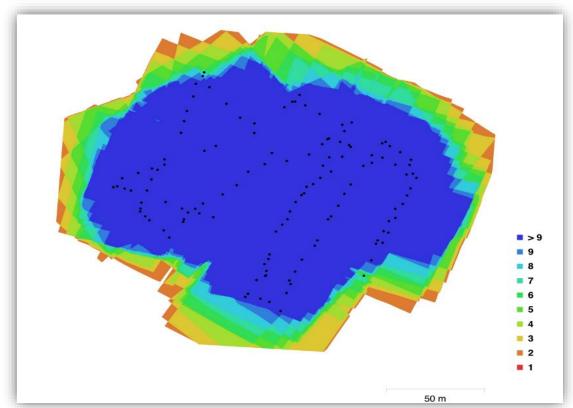


Figura 17 Traslape de las imágenes

Fuente. Sofware Agisot Photoscan, elaboración propia

Una de las secciones del informe muestra la localización de las cámaras durante el vuelo, el margen de error se identifica por colores y se analiza que el rango de inexactitud es de 0 m a 3.2 m.

Figura 18 Localización de las imágenes con su error

Fuente. Sofware Agisot Photoscan, elaboración propia

En la tabla 15 se muestran los errores totales que fueron generados en el momento de corregir las fotografías aéreas en cada uno de los ejes X, Y y Z. Los puntos donde se tomaron las fotografías más cercanas obtuvieron un error de tan solo 12 cm, mientras que el predio Nº 4 por ser un terreno ancho, los puntos de la fotografía son lejanas y el error es más alto con un valor de 61 cm.

Tabla 15 Errores totales en la corrección de imágenes para los ejes X, Y yZ

PREDIO	ERROR										
I KEDIO	X (m)	Y (m)	XY (m)	Z (m)	TOTAL (m)						
Nº 1	0,09087	0,68591	0,00806	0,846865	0,17933						
Nº 2	0,09007	0,00091	0,00000	0,040003	0,17933						
Nº 3	0,817349	0,851974	0,18064	0,464255	0,26864						
Nº 4	0,023	0,26059	0,62346	0,0491	0,61427						

7.3 FASE III. COMPARATIVO DE DATOS

De acuerdo a los levantamientos realizados por los diferentes métodos topográficos (estación total, navegador GPS y ART) se obtienen una serie de datos (Azimut, coordenadas e imágenes aéreas)de los cuales se realiza una construcción de resultados con su debido cálculo para obtener la información necesaria de los tres métodos utilizados, para lo cual hemos desglosado la información en 3 matrices como se muestra a continuación:

7.3.1 Matriz comparativa diagnostico

Tabla 16Matriz diagnostica comparativa

	Table Toward and Toward Compared Va												
PRE DIO	LONGI TUD	LATIT UD	CÓDIGO PREDIAL	MATRICULA INMOBILIARIA	ÁREASEG ÚN IGAC	NÚMERO DE CONSTRUCCIONES	DESTINO ECONÓMICO						
Nº 1	70°50'1 7.60"	4º142'1 5.12"	732750001000000030 112000000000	1129348	2250 m2	2 Casas	Agropecuario						
Nº 2	74º50'1 8.77"	4º12'27 .81"	732750001000000030 256000000000	357-18487	2795 m2	3 Casas	agropecuario						
Nº 3	74º51'1 3.27"	4º142'1 5.12"	732750001000000020 216000000000	119217	1658 m2	2 Casas	Agropecuario						
Nº 4	74º51'3 0.38"	4º11'55 .36"	732750001000000020 19600000000	357-15453	7 ha, 819 m2	1 restaurante, 5 quioscos, 1 Cabaña	Recreacional						

Fuente. Instituto Geográfico Agustín Codazzi

En la tabla 16 se relaciona la información que se obtiene del Instituto Geográfico Agustín Codazzi (IGAC) obteniendo datos como la matricula inmobiliaria y el código catastral; el área del terreno según los datos consignados por el Instituto Geográfico Agustín Codazzi (IGAC) serán tomada como información secundaria.

7.3.2 Matriz comparativa análisis de errores y precisión

Para el cálculo del error experimental porcentual fue calculado con la siguiente ecuación: $Error \% = \frac{(V.teorico-V.experimental)}{V.teorico} x 100;$ ²¹deduciendo que el valor de las incógnitas serán:

• V. teórico: Área según IGAC (m²)

• V. experimental: ÁREA LEVANTADA (m²)

A continuación se da un ejemplo con el predio N°3: $Error = \frac{(1658,00-1385,77)}{1658,00} x 100 = 16,4191 \%$

Tabla 17Matriz comparativa análisis de errores y precisión N° 1

Table 17 Matriz comparative arienes y precision in 1														
			RESULTA	ADOS										
			MÉTODO CON\	/ENCIONAL										
PREDIO		ESTACIÓN TOTAL												
	AREA SEGÚN	ÁREA	o.o.é		ERROR									
	IGAC (m²)	LEVANTADA (m²)	PRECISIÓN	PORCENTUAL	Sistemático	Accidental								
Nº 1	2250,00	2445,94	0°0'9"	8,7084%		El ojo de pollo del								
Nº 2	2795,00	2581,61	0°0'7"	7,6347%	Que la Estación total este sin calibración y	bastón no se encuentre en el								
Nº 3	1658,00	1385,77	0°0'2"	16,4191%	sin nivelación.	centro cuando se								
Nº 4	70819	9458,16	0°0'4"	5,4184%		manda el láser.								

Nota: para el predio N° 4 se tomo una extensión aproximada de 10.000 m²para poder ejecutar el levantamiento, teniendo en cuenta lo anterior el V.teórico para el predio N°4 será de: 10.000 m².

²¹Secretaría de Educación Pública. Definición de error: error absoluto y relativo. Obtenido de https://sites.google.com/site/khriztn/1-3/1-3-1.

Tabla 18 Matriz comparativa análisis de errores y precisión N° 2

			RESULTAI	oos								
			MÉTODO CONVE									
	NAVEGADOR GPS											
PREDIO	4554 050ÚN	ÁDEA LEVANITADA			ERROR							
	AREA SEGÚN IGAC (m²)	ÁREA LEVANTADA (m²)	PRECISIÓN	PORCENTUAL	Sistemático	Accidental						
Nº 1	2250,00	2487,73	± 3 m	10,5657 %	Que no hallan suficientes	-, ,						
Nº 2	2795,00	2445,50	± 3 m	12,5044%	satélites para hacer la	El mal manejo del GPS, y la eliminación de						
Nº 3	1658,00	1331,50	± 3 m	19,6924%	triangulación y obtener una	puntos por equivocación.						
Nº 4	70819	9458,16	± 3 m	5,4184%	precisión de ± 1 m.	·						

Nota: para el predio N° 4 se tomo una extensión aproximada de 10.000 m²para poder ejecutar el levantamiento, teniendo en cuenta lo anterior el V.teórico para el predio N°4 será de: 10.000 m².

Tabla 19 Matriz comparativa análisis de errores y precisión N° 3

			RESULT								
			MÉTODO								
PREDIO	ART										
I KLDIO	AREA SEGÚN	ÁREA	PPECICIÓN		ERROR						
	IGAC (m²)	LEVANTADA (m²)	PRECISIÓN	PORCENTUAL	Sistemático	Accidental					
Nº 1	2250,00	2676,8685	0,17933 m	18, 9719%		No prever la velocidad del viento y					
Nº 2	2795,00	2416,3619	0,17933 m	13,5469%	No mantener el mismo nivel de altura y la						
Nº 3	1658,00	1798,4383	0,26864	8.4703%	velocidad del vuelo.	desviarse de la línea de vuelo.					
Nº 4	70819	10654,49	0,61427 m	6,5449%							

Nota: para el predio N° 4 se tomo una extensión aproximada de 10.000 m²para poder ejecutar el levantamiento, teniendo en cuenta lo anterior el V.teórico para el predio N°4 será de: 10.000 m²

Los datos obtenidos en las tablas 17, 18 y 19 son referentes a las aéreas de los 4 predios estudiados donde se compara la diferencia en metros cuadrados que existe entre cada uno de ellos, la información fue obtenida por fuente propia para posteriormente relacionar estas áreas con el área que presenta el inmueble en el Instituto Geográfico Agustín Codazzi (IGAC) y así optimizar los procesos de gestión predial rural en obras de infraestructura vial a partir de aeronaves remotamente tripuladas (ART).

7.3.3 Matriz comparativa de recursos

De acuerdo a los trabajos obtenidos en campo se logró determinar que los factores clima, área, recurso humano y costos son fundamentales para cada uno, teniendo en cuenta que las ventajas y desventajas son diferentes para cada método, observando así que la estación total se puede manipular en un clima soleado y/o lluvioso mientras que con el navegador GPS es manejable en tiempo meteorológico aceptable (soleado), se debe tener en cuenta que la manipulación del mismo es primordial contar con mínimo 3 satélites para realizar la triangulación y obtener las coordenadas.

Con el método ART no es posible realizar trabajos en días lluviosos debido a que afecta el lente del dron y esto impide la captura de la imagen; además de esto las fotografías aéreas se dificultan cuando se localiza vegetación a grandes alturas y no permiten la visualización de construcciones situadas bajo estas.

En lo referente a aeronaves remotamente tripuladas el tiempo de ejecución en campo es mínimo en comparación con los métodos convencionales lo que hace un trabajo rápido y eficiente, su proceso en oficina llega a ser más ágil en sus periodos de digitalización, corrección de imágenes, bosquejo del predio y la obtención de datos ya que se trabajan diferentes sistemas de digitalización como lo son Photoshop Cs6, AutoCAD y Arcgis, de igual manera el área obtenida por la aeronave remotamente tripulada comparada con los métodos convencionales presenta un error de 0,01% por lo que se puede considerar optimo y adecuada su utilización en procesos de gestión predial.

Tabla 20 Matriz comparativa de recursos

		ES	STACIÓN TO	OTAL			N	AVEGADOF	R GPS		ART				
PREDIO	ÁREA (m²)	TIEMPO	RECURSO HUMANO	EQUIPO	COSTO (\$)	ÁREA (m²)	TIEMPO	RECURSO HUMANO	EQUIPO	COSTO (\$)	ÁREA (m²)	TIEMPO	RECURSO HUMANO	EQUIPO	COSTO (\$)
N° 1	2445,94	1 hr 30 min	4	Estación	800.000	2487,73	50 min	1		500.000	2676,86	4 min	3	Dron multirrotor. Estación	
N° 2	2581,61	1 hr 30 min	4	total. Prisma. Decámetro.	800.000	2445,50	50 min	1	Navegador GPS. Cartera de tránsito.	500.000	2416,36	4 min	3	FPV (first person view).	1.800.000
N° 3	1385,77	1 hr	4	Cartera de tránsito.	500.000	1331,50	30 min	1	Decámetro. Software AutoCAD.	250.000	1798,43	4 min	3	IPad o celular. Software	1.000.000
N° 4	9458,16	4 hrs 30 min	4	AutoCAD.	3'200.000	9458,16	2 hrs 30 min	1		1'500.000	10654,5	20 min	3	Agisoft. Software AutoCAD.	
COSTO POR METODO	\$ 5.300.000 M/CTE					\$ 2.750.000 M/CTE						\$ 1	I.800.000 M	I/CTE	
COSTO TOTAL	\$ 9.850.000 M/CTE														

7.3.4 Matriz análisis de resultados

Tabla 21 Matriz análisis de resultados

	MATRIZ ANÁLISIS DE RESULTADOS											
	ESTACION TOTAL	NAVEGADOR GPS	ART									
Trabajo de Campo	Se hace necesario la toma de datos en campo debido a que deben participar mínimo 3 personas capacitadas distribuidos de la siguiente manera: uno ubicando los puntos en la estación total generando las coordenadas, otro con el bastón mirara a la estación total con el fin de generar un láser de transferencia y finalmente quien pueda apuntar los datos obtenidos, esto cuando la estación no tiene la memoria suficiente para almacenarlos.		Se requiere de personal especializado para la manipulación de los equipos con el fin de obtener videos y fotografías áreas del predio, de igual manera, la verificación de restricción aérea por motivos de aeropuertos cercanos de acuerdo a la circulación 002 de la Aeronáutica Civil Colombiana.									
Trabajo de Oficina	La información obtenida en campo deberá ser digitalizada en Excel y Auto CAD para la obtención de las áreas, el error obtenido y una imagen en planta del predio levantado.	obtención de las áreas de cada uno de ellos con	Con las imágenes aéreas obtenidas se realiza un post proceso de la información con el fin de obtener el área sobre el cual voló la aeronave remotamente tripulada además de esto obteniendo diferente información que nos brinda este mecanismo como lo será delimitación de predios, curvas de nivel generadas a partir del modelo de elevación obtenido y planimetría a escala.									
Análisis	El levantamiento por estación total es un teodolito compuesto por un telescopio para la medición de ángulos horizontales y verticales, así mismo un distancio metro laser el cual calcula distancias al punto requerido.	posicionado por medio de satélites los cuales se										

		ESTACION TOTAL	NAVEGADOR GPS	ART		
Recurso Humano	personal capa (estación total)	acitado para el manejo del equipo), cadenero y en ocasiones especiales graben las coordenadas en el equipo	capacitado para el manejo del equipo ya que	Es necesario la presencia de un director de proyecto así mismo de un operador ART, técnico auxiliar de campo y de topografía y un analista SIG quienes llevaran a cabo la toma de datos e imágenes aéreas.		
Equipos Utilizados	 Prism Decái Carte 	ción total. na. metro. ra de tránsito. rare AutoCAD.	 GPS. Cartera de tránsito. Decámetro. Software AutoCAD. 	 Dron multirrotor. Estación FPV (firstpersonview) Tablet, IPad o celular. Software Agisoft. Software AutoCAD. 		
Tiempo Requerido	extensión aproximadame	de datos de los predios de menor el tiempo transcurrido fue ente de 1 a 2 horas mientras que para agnitud considerable el tiempo tardado y 30 min.	predios de áreas entre 1000 y 3000 m2 el tiempo tardado fue de 50 min, mientras que para el predio de 7 hectáreas se tardó 2 horas y 30 min	El tiempo estimado de vuelo fue de 5 a 10 min en los predios de menor extensión generando tiempos de demora en el proceso de ubicación debido a que existe una restricción aérea mientras que en el predio de gran magnitud el tiempo de vuelo fue apropiadamente 20 min.		
	Predio. 1	2445,94 m ²	2487,73 m²	2243,3241 m²		
Resultados	Predio. 2	2581,61 m ²	2445,50 m ²	2459,1756 m ²		
(Åreas Obtenidas)	Predio. 3	1385,77 m ²	1331,50 m ²	1996,9547 m²		
	Predio. 4	9458,16 m ²	9458,16 m²	10654,4919 m ²		
Hallazgos	<u> </u>		topográficos realizados son de gran beneficio ya que en la medida en que se realizó el proceso se obtuvo mayor rapidez en recibir las coordenadas	Uno de los principales hallazgos conseguidos mediante el método ART es facilidad que se tiene en el momento de obtener datos en zonas que sencillamente son inaccesibles para el personal, de igual manera la toma de información es sencilla donde para lograr el área del predio no es necesario establecer una serie de puntos ya que el equipo utilizado (Dron) trae establecido cuales son las líneas que sobrevuela si no se modela de una vez toda el área de trabajo y seguidamente los puntos necesarios se calculan cómodamente en el pos proceso.		

8. CONCLUSIONES

- Los levantamientos convencionales (estación total y navegador GPS) y levantamiento con aeronaves remotamente tripuladas (ART) dependen de la topografía del terreno, el clima, la ubicación y entre otros factores que intervienen en la toma de datos, recurso humano, post-proceso y costos, teniendo en cuenta el tipo de trabajo que se vaya a realizar.
- Para la toma de información de áreas, la obtención de imágenes capturadas del predio y el tiempo para acopiar la información fue mínimo por el método ART; uno de los factores que se presentaron es la existencia de vegetación de gran altura, donde no se puede determinar si existen construcciones algunas debajo de esta o el área total de la edificación, lo cual conlleva a realizar un levantamiento detallado de los puntos. Se concluye que es conveniente utilizar para inventarios y seguimientos de obra.
- Cuando comparamos el método convencional (estación total y navegador GPS) con el método ART (aeronave remotamente tripulada) se necesita de un título público o certificación de cabida y linderos con el propósito de cotejar el área del expediente y el área levantada, para así mismo evidenciar el sistema más eficiente teniendo en cuenta que cada sistema de levantamiento posee un error sistemático y/o un error accidental (error humano).

9. RECOMENDACIONES

Antes de manejar una aeronave remotamente tripulada se necesita dejar especificada la responsabilidad del operador (entidad, empresa u organismo que opera la aeronave) sobre la aeronave y su operación, donde se establecen la obligación a cumplir con la normativa existente.

Al realizar un levantamiento topográfico con el sistema de estación total es importante revisar la documentación donde se evidencie la respectiva calibración con una fecha menor a un año, debido a su uso continuo ya sea en obra o en trabajos más específicos la estación total necesita una calibración y mantenimiento anual para garantizar el perfecto funcionamiento.

Cuando se realicen levantamientos por medio del sistema de navegador GPS es debido realizarla para terrenos de gran extensión y en su preferencia sin edificaciones ya que, si poseen construcciones pequeñas o cercanas, las coordenadas obtenidas se pueden entrelazar y arrojar el mismo eje, debido a que su error es de \pm 3 metros.

El área registrada en los archivos del Instituto Geográfico Agustín Codazzi (IGAC), no es cuestionable ya que para las actividades de gestión predial, esta información es solamente para diagnósticos y hace parte de una fuente secundaria.

10. BIBLIOGRAFÍA

A continuación, se citan las referencias bibliográficas utilizadas como guía del proyecto.

A., Arozarena Villar. (2010). Teledetección y sistemas de tratamiento digital de imagenes. Obtenido de http://ocw.upm.es/ingenieria-cartografica-geodesica-y-fotogrametria/topografia-cartografia-y

geodesia/contenidos/TEMA_11_FOTOGRAMETRIA_Y_TELEDETECCION/Teledeteccion/microsoft-word-

teledeteccion_y_sist_tratamiento_digital_imagenes.pdf. 42p.

Alcaldía Mayor De Bogotá, D. U. (s.f.). Manual de Gestión Predial. Proceso de Gestión Predial, 25 p. Bogotá D.C.

BORRERO, Ochoa. (s.f.). Métodos de avaluo para determinar la plusvalia urbana. Obtenido de:

http://institutodeestudiosurbanos.info/dmdocuments/cendocieu/Especializacion_ Mercados/Documentos_Cursos/Metodos_Avaluo_Determinar-Borrero_Ochoa.pdf

CANO, Andres Mauricio y OBANDO, Andres Ivan;. (2015). Propuesta metodológica para la gestión predial para predios afectados por la ejecución de obras de infraestructura vial. Trabajo de grado. Bogota D.C.: Universidad Distrital Francisco Jose De Caldas Facultad De Ingeniería.150 p.

Científicos del suelo y Cartógrafos. (2001). Interpretación de fotografías aéreas. México: Soffer, s de R.L.

CODAZZI, I. G. (2012). Manual de reconocimiento predial. Obtenido de http://www2.igac.gov.co/igac_web/UserFiles/File/Catastro/manualreconocimient o.pdf

ESRI. (s.f.). ArcGis Resources. Recuperado el 31 de 10 de 2016, de Esri: http://resources.arcgis.com/es/help/getting-started/articles/026n000000000000000.htm

Fotogrametría aérea, trazado de mapas a partir de fotografías aéreas. (Febrero de 2014). Obtenido de

http://www.catalonia.org/cartografia/Clase_07/Fotogrametria/Fotogrametria_index.html#restitucion

HERRERA, Herrera Bernard. (1987). Elementos de fotogrametría. México: Limusa S.A. 200p.

Instituto Geográfico Agustín Codazzi. (Mayo de 2004). Tipo de coordenadas manejados en Colombia. (L. S. Rodriguez, Ed.) Obtenido de http://www.igac.gov.co/wps/wcm/connect/facf7c80469f7c2eb03eb8923ecdf8fe/tipos+de+coordenadas+11.pdf?MOD=AJPERES

MALVEAUX, Charles. (2014). Investigating the potential for drone use in agriculture. (L. F. Benedict, Ed.) Louisiana agriculture, vol.57, (N°.1), 32. Obtenido de http://www.lsuagcenter.com/NR/rdonlyres/CDDE1EE5-BB6B-4CD4-B100-B0BA0BCC721D/96270/PDFI.pdf

Ministerio de hacienda y crédito público. (26 de 12 de 1983). Decreto 3496 de 1983. Obtenido de http://www.igac.gov.co/wps/wcm/connect/f6fe850048eda368a014edc1693f1116 /decreto3496de1983.pdf?MOD=AJPERES

Ministerio de transporte, Instituto Nacional de Vias. (2015). Apendice predial. Obtenido de http://fondoadaptacion.gov.co/download/APENDICE%20E_FA-IC-011-2015_Gesti%C2%A2n%20Predial%20Definitivo.pdf.

PACHAS, L. Raquel. (02 de Octubre de 2009). El levantamiento topográfico: uso del Gps y estación total. Obtenido de http://www.saber.ula.ve/bitstream/123456789/30397/1/articulo3.pdf

Predios d,t . (2014). Determinación de la adquisición de un inmueble por el procedimiento de expropiación por vía administrativa y oferta de compra.

Resumen de operación de GPS Promark 2. (s.f.). Obtenido de http://webcache.googleusercontent.com/search?q=cache:http://www.abreco.com.mx/manuales_topografia/gps/promark2a.doc

Secretaría de Educación Pública. Definición de error: error absoluto y relativo. Obtenido de https://sites.google.com/site/khriztn/1-3/1-3-1.

Secretraría general de la alcaldia mayor de Bogotá. (18 de julio de 1977). Ley 388 de 1977. Obtenido de http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=339

TORRES, Nieto Álvaro y BONILLA, Villate Eduardo. (1968). Topografía (Vol. libro 2, toma 8). Bogotá: Norma. 405 p.

WOLF, R. Paul y GHILANI, D. Charles. (2008). Topografía (Vol. undecima edición). México: Alfaomega grupo editor, 952 p.

ZAMORA, Ramón. (agosto de 2015). El uso de drones en la gestion urbana. Obtenido de http://blogs.iadb.org/ciudadessostenibles/2015/08/28/drones/

11.ANEXOS

ANEXO A.PREDIOS AFECTADOS POR LA CALZADA DE 4G

PREDIO	DEPARTAMENTO	MUNICIPIO	CODIGO PREDIAL	MATRICULA INMOBILIARIA	AREA DEL TERRENO	AREA CONSTRUIDA	DIRECCION	SEGÚN IGAC	INSPECCION OCULAR
					FLANDES	1			
Nº1	TOLIMA	FLANDES	7325700010000 0005002400000 0000	357-19333	1 Ha, 7075 m2		LO	-	Monte, Arboles.
Nº2	TOLIMA	FLANDES	7327500010000 0005020500000 0000	357-15005	4 Ha, 7500 m2		EL EDEN TOPACIO	-	sin demarcar
Nº3	TOLIMA	FLANDES	7327500010000 0005001800000 0000	357-15005	5 Ha, 1650 m2	85 m2	EL CLAVEL	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Casa 1 piso sin habitar, Arboles, Cerca, Propiedad Privada.
Nº4	TOLIMA	FLANDES	7327500010000 0005001700000 0000	357-22975	2 Ha, 9150 m2	52 m2	EL CRISOL	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Cerca Verde, Zona muerta.
Nº5	TOLIMA	FLANDES	7327500010000 0005314300000 0000	357-47194	2 Ha, 8203 m2		LA PALMA LO 1	-	Cerca Verde, Zona muerta.
Nº6	TOLIMA	FLANDES	7327500010000 0005314400000 0000	357-47196	2 Ha, 7254 m2		LO 3	-	Vivienda 2 pisos, Cerca Verde.
Nº7	TOLIMA	FLANDES	7327500010000 0005001500000 0000	357-47195	2 Ha, 7900 m2	132 m2	LO 2	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Casa1 piso, Comercio (monta Ilantas), Cerca, Árboles, Palmas,

PREDIO	DEPARTAMENTO	MUNICIPIO	CODIGO PREDIAL	MATRICULA INMOBILIARIA	AREA DEL TERRENO	AREA CONSTRUIDA	DIRECCION	SEGÚN IGAC	INSPECCION OCULAR
Nº8	TOLIMA	FLANDES	7327500010000 0005314500000 0000	357-47197	2 Ha, 7254 m2		EL EDEN LO 4	-	Monte, Arboles.
Nº9	TOLIMA	FLANDES	7327500010000 0005000200000 0000	21777441	5 Ha, 7500 m2	92 m2	EL FARO LA SOMBRIA	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Casa 1 piso, Cerca Verde, Palmas.
Nº10	TOLIMA	FLANDES	7327500010000 0005000100000 0000	357-11318	3 Ha, 415 m2		LA SOMBRIA	-	Monte, Arboles.
					VIA				
Nº11	TOLIMA	FLANDES	7327500010000 0006004000000 0000	22264266	14 Ha, 625 m2		LUCERO 6	-	Árboles, Monté, Cultivo (cebada).
Nº12	TOLIMA	FLANDES	7327500010000 0006003900000 0000	22264266	2 Ha, 5000 m2		BRUSELAS 4	-	Árboles, Monté, Cultivo (cebada).
Nº13	TOLIMA	FLANDES	7327500010000 0006003800000 0000	357-3153	5 Ha, 9607 m2	171 m2 - 2 construcciones	TRES ESQUINAS LAGUNILLA LIMONES	CONSTRUCCION VIVIENDA HASTA 3 PISOS, BODEGA	Bodega, Vivienda
Nº14	TOLIMA	FLANDES	7327500010000 0006002500000 0000	357-28533	0 Ha, 4973 m2		LO A1	-	Monte, Arboles.
Nº15	TOLIMA	FLANDES	7327500010000 0006002400000 0000	357-29404	0 Ha, 4725 m2		LO EL RECUERDO 1	-	Monte, Arboles.
Nº16	TOLIMA	FLANDES	7327500010000 0006002300000 0000	357-18498	0 Ha, 6092 m2		LO 2 EL RECUERDO	-	Monte, Arboles.
Nº17	TOLIMA	FLANDES	7327500010000 0006002200000 0000	357-18497	0 Ha, 3013 m2	64 m2	LO 3 EL RECUERDO	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Monte, Arboles.
Nº18	TOLIMA	FLANDES	7327500010000 0006002100000 0000	357-24099	0 Ha, 3079 m2	263 m2 - 3 construcciones	VILLA PINZON	CONSTRUCCION BODEGA, COMERCIO, CANEYES- COBERTIZOS.	Monte, Arboles.

PREDIO	DEPARTAMENTO	MUNICIPIO	CODIGO PREDIAL	MATRICULA INMOBILIARIA	AREA DEL TERRENO	AREA CONSTRUIDA	DIRECCION	SEGÚN IGAC	INSPECCION OCULAR
Nº19	TOLIMA	FLANDES	7327500010000 0006002000000 0000	357-5381	1 Ha, 7500 m2	154 m2	TRANSMISOR A RADIO GIRARDOT	CONSTRUCCION COMERCIO - TORRE RADIO	TORRE DE RADIO
Nº20	TOLIMA	FLANDES	7327500010000 0006001800000 0000	357-26354	2 Ha, 7984 m2	237 m2 - 2 construcciones	LO	CONSTRUCCION COMERCIO, CANEYES- COBERTIZOS.	PARCELACION: Casa, Parador, Zona Verde, Arboles.
				VIA NO	EXISTENTE E	N EL MAPA			
Nº21	TOLIMA	FLANDES	7327500010000 0002002300000 0000	12481326	3 Ha, 506 m2	211 m2 - 2 construcciones	LA PROVIDENCIA COLEGIO	CONSTRUCCION VIVIVENDA HASTA 3 PISOS, CANEYENES- COBERTIZOS.	Vivienda 2 pisos, Arboles de Fruto, Flores.
Nº22	TOLIMA	FLANDES	7327500010000 0002116300000 0000	357-57321	1 Ha, 1742 m2		LO1 TERRANOVA COLEGIO	-	Monte, Arboles.
Nº23	TOLIMA	FLANDES	7327500010000 0002018600000 0000	357-46729	8 Ha, 1236 m2	406 m2 - 2 construcciones	LA PROVIDENCIA PARTE	CONSTRUCCION VIVIVENDA HASTA 3 PISOS, CANEYENES- COBERTIZOS.	Monte, Arboles.
Nº24	TOLIMA	FLANDES	7327500010000 0002104200000 0000	357-46742	3 Ha, 7020 m2	733 m2 - 5 construcciones	RANCHO SAN NICOLAS COLEGIO	CONSTRUCCION VIVIENDA (2), CANEYES- COBERTIZOS, KIOSCOS, COCHERAS- MARRANERAS.	PARCELACION: Cultivo, Casa- parador-quioscos- restaurante, Cochera deteriorada.
					VIA				
Nº25	TOLIMA	FLANDES	7327500010000 0002002400000 0000	357-16809	2 Ha, 1985 m2	1583 m2 - 4 construcciones	LAS MARGARITAS COLEGIO	CONSTRUCCION COMERCIO, PISCINAS, CANEYES-COBERTIZOS (2)	Casa 1, Arboles, Monte.
	QUEBRADA SANTA ANA								
Nº26	TOLIMA	FLANDES	7327500010000 0002002500000 0000	357-34774	2 Ha, 1029 m2	1319 m2 - 5 construcciones	RADIOLANDIA O SANTA INES COLEGIO	CONSTRUCCION VIVIENDA (2), PISCINAS, KIOSCIS, CANEYES- COBERTIZOS.	Casa 1 - Remodelación o construcción, deshabitada, sin piscina.

PREDIO	DEPARTAMENTO	MUNICIPIO	CODIGO PREDIAL	MATRICULA INMOBILIARIA	AREA DEL TERRENO	AREA CONSTRUIDA	DIRECCION	SEGÚN IGAC	INSPECCION OCULAR	
Nº27	TOLIMA	FLANDES	7327500010000 0002002600000 0000	357-52174	2 Ha, 5871 m2	161 m2	SANTA CLARA LO2 COLEGIO	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Monte, Arboles.	
Nº28	TOLIMA	FLANDES	7327500010000 0002106900000 0000	357-31190	1 Ha, 2078 m2	106 m2 - 2 construcciones	EL RECUERDO COLEGIO	CONSTRUCCION VIVIENDA, CANEYES- COBERTIZOS	Cerca verde, Árbol frutal.	
Nº29	TOLIMA	FLANDES	7327500010000 0002002700000 0000	357-20588	1 Ha, 7586 m2	1269 m2 - 5 construcciones	GUADALUPE HOTEL LIDO COLEGIO	COMERCIO (2), BODEGA, CANEYES-COBERTIZOS, PISCINAS	Bosque.	
Nº30	TOLIMA	FLANDES	7327500010000 0002020900000 0000	357-20587	2 Ha, 636 m2		UR CANADA COLEGIO	-	Casa 1, Piscina, Nueva Construcción.	
				VIA NO	EXISTENTE E	N EL MAPA				
							VIVIENDA NUEVA	-	Casa 1, Parador, Piscina.	
Nº31	TOLIMA	FLANDES	7327500010000 0002002800000 0000	357-866	26 Ha, 5629 m2		LA PRIMAVERA	-	Cultivo.	
Nº32	TOLIMA	FLANDES	7327500010000 0002003000000 0000	1210790	2 Ha, 4152 m2	257 m2	CANDILEJAS COLEGIO	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Casa 1, Arboles, Monte.	
Nº33	TOLIMA	FLANDES	7327500010000 0002023400000 0000	357-28015	6 Ha, 9313 m2	685 m2 - 2 construcciones	SECTOR 3 CONDOMINIO SANTA ANA	CONSTRUCCION VIVIENDA HASTA 3 PISOS, PISCINA	Condominio Santa Ana.	
					VIA					
Nº34	TOLIMA	FLANDES	7327500010000 0002102080000 0000	357-39171	0 Ha, 988 m2		LO 31 PRADERAS DE PALMA REAL	-	Condominio Palma Real.	
	QUEBRADA									
Nº35	TOLIMA	FLANDES	7327500010000 0002077300000 0000	357-38752	22 Ha, 2063 m2	5615 m2 - 4 construcciones	APOSENTOS COLEGIO	CONSTRUCCION VIVIENDA (3), KIOSKOS	Monte, Arboles.	
Nº36	TOLIMA	FLANDES	7327500010000 0002077400000 0000	357-33330	1 Ha, 4688 m2	373 m2 - 3 construcciones	LO CASA DE VERANEO	CONSTRUCCION VIVIENDA, BODEGA, CORRALES	Hacienda, Arboles, Cerca.	

PREDIO	DEPARTAMENTO	MUNICIPIO	CODIGO PREDIAL	MATRICULA INMOBILIARIA	AREA DEL TERRENO	AREA CONSTRUIDA	DIRECCION	SEGÚN IGAC	INSPECCION BINOCULAR
Nº37	TOLIMA	FLANDES	7327500010000 0002022700000 0000	357-1695	22 Ha, 7331 m2		LO COLEGIO	-	Zona de Cultivo.
Nº38	TOLIMA	FLANDES	7327500010000 0002098200000 0000	357-38674	27 Ha, 3939 m2		SAN JERONIMO LO 2	-	Cultivo arroz, Monte.
Nº39	TOLIMA	FLANDES	7327500010000 0002005700000 0000	357-38673	55 Ha, 4288 m2	264 m2 - 2 construcciones	SAN JERONIMO 1	CONSTRUCCION VIVIENDA, CANEYES- COBERTIZOS	Cultivo arroz, Monte, Casa 1, Edificio - Torre de control.
					VIA				
					ESPINAL				
Nº40	TOLIMA	ESPINAL	7326800010000 0004008900000 0000	357-16707	0 Ha, 689 m2	93 m2	LA FORTUNA	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Parador, Quioscos, Casa.
Nº41	TOLIMA	ESPINAL	7326800010000 0004030100000 0000	357-45565	0 Ha, 414 m2	36 m2	CS LO MONTALVO	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Casa, Árbol 1.
Nº42	TOLIMA	ESPINAL	7326800010000 0004030100000 0000	357-45566	0 Ha, 90 m2		EL FUTURO	-	Choza de Monta Ilantas.
Nº43	TOLIMA	ESPINAL	7326800010000 0004030000000 0000	357-21911	0 Ha, 504 m2	490 m2 - 2 construcciones	LO	CONSTRUCCION VIVIENDA, BODEGA- CASA BOMBA	Palmas, Hotel, Bodega.
Nº44	TOLIMA	ESPINAL	7326800010000 0004036700000 0000	357-21037	0 Ha, 988 m2		LO LAS MINAS	-	Bodega.
Nº45	TOLIMA	ESPINAL	7326800010000 0004049300000 0000	357-41984	0 Ha, 478 m2	32 m2	LO 4	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Casa 2 pisos.
Nº46	TOLIMA	ESPINAL	7326800010000 0004028900000 0000	357-26784	0 Ha, 1064 m2	42 m2	EL AGRADO LO 2	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Casa, Arboles, Parador.

F	PREDIO	DEPARTAMENTO	MUNICIPIO	CODIGO PREDIAL	MATRICULA INMOBILIARIA	AREA DEL TERRENO	AREA CONSTRUIDA	DIRECCION	SEGÚN IGAC	INSPECCION OCULAR
	Nº47	TOLIMA	ESPINAL	7326800010000 0004037200000 0000	357-24767	0 Ha, 478 m2	35 m2	EL RECUERDO	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Casa, Arboles, Parador.
	Nº48	TOLIMA	ESPINAL	7326800010000 0004037100000 0000	357-24768	0 Ha, 478 m2	42 m2	LA ESPERANZA	CONSTRUCCION VIVIENDA HASTA 3 PISOS	Casa, Monte.

ANEXO B.CARTERAS DE CAMPO METODO CONVENCIONAL FASE I

PREDIO No 1

	CARTERA DE CAMPO –NAV	/EGADOR GPS		
0	Detalle	E	N	h
1	Λ1	915540	960359	458
2	Esquina Lindero	915516	960339	459
3	Proyección Lindero	915529	960334	459
4	Esquina Casa 1	915528	960337	459
5	Esquina Casa 1	915528	960335	458
6	Esquina Casa 1	915524	960340	458
7	Esquina Casa 1	915527	960346	458
8	Esquina Casa 2	915529	960347	458
9	Esquina Casa 2	915529	960340	458
10	Esquina Casa 2	915531	960335	457
11	Esquina Casa 2	915535	960341	457
12	Esquina Casa 3	915541	960341	457
13	Esquina Casa 3	915543	960340	457
14	Esquina Casa 3	915544	960334	457
15	Esquina Casa 3	915543	960332	457
16	Esquina Lindero	915543	960329	457
17	Esquina Baño 1	915538	960349	456
18	Esquina Baño 1	915538	960349	457
19	Esquina Baño 1	915535	960351	457

0	Detalle	E	N	h
20	Esquina Baño 1	915538	960352	456
21	Esquina Baño 2	915538	960349	457
22	Esquina Baño 2	915538	960348	456
23	Esquina Baño 2	915539	960349	456
24	Esquina Baño 2	915540	960347	456
25	Árbol	915542	960347	456
26	Proyección Lindero	915549	960344	456
27	Árbol	915546	960353	456
28	Árbol	915531	960354	456
29	Proyección Lindero	915531	960365	456
30	Esquina Restaurante	915538	960374	454
31	Esquina Restaurante	915537	960374	454
32	Esquina Restaurante	915543	960385	456
33	Esquina Restaurante	915545	960386	456
34	Esquina Casa	915549	960384	456
35	Esquina Casa	915558	960386	456
36	Esquina Casa	915556	960368	454
37	Esquina Casa	915554	960369	454
38	Árbol	915550	960395	454
39	Esquina	915587	960460	451

	CARTERA DE CAMPO - ESTACION TOTAL							
A	0	AZIMUT			DISTANCIA (METROS)	OBSERVACIONI		
Ф	0	GRADOS	MINUTOS	SEGUNDOS	DISTANCIA (METROS)	OBSERVACION		
Α	1	0	0	0	26,394	NORTE ARBITRARIO - LINDERO		
	2	358	19	54	12,23	ESQUINA CASA		
	3	339	33	5	11,363	ESQUINA CASA		
	4	338	8	25	18,32	ESQUINA CASA		
	5	329	30	9	18,375	ESQUINA CASA		
	6	324	27	33	10,77	ESQUINA CASA		
	7	322	20	46	8,5	ESQUINA LAVADERO		
	8	316	4	0	5,995	ESQUINA LAVADERO		
	9	304	1	0	6,55	ESQUINA LAVADERO		
	10	289	38	3	8,088	ESQUINA BAÑO		
	11	296	48	5	9,247	ESQUINA BAÑO		
	12	282	57	41	9,247	ESQUINA BAÑO		
	13	302	39	53	24,337	ESQUINA CASA		
	14	275	57	34	19,148	LINDERO		
	15	247	42	11	15,73	LINDERO		
	16	250	15	40	5,8	ESQUINA BAÑO		
	17	252	22	4	4,22	ESQUINA BAÑO		
	18	274	22	2	4,593	ESQUINA BAÑO		
	19	306	0	0	12,2121	CASA		
	20	295	2	16	19,3952	CASA		
	21	288	1	49	22,0019	CASA		
	В	139	10	15	23,127	ANGULO OBSERVADO		
В	А	0	0	0	13,099	ANGULO OBSERVADO		

			AZIMUT				
4	0	GRADOS	MINUTOS	SEGUNDOS	DISTANCIA (METROS)	OBSERVACION	
	22	240	12	19	25,42	LINDERO	
	23	239	55	21	12,564	ESQUINA CASA	
	24	303	54	10	10,726	ESQUINA CASA	
	25	186	37	19	8,58	ESQUINA CHOZA	
	26	49	35	12	3,738	ESQUINA CHOZA	
	27	333	44	27	4,591	ESQUINA CHOZA	
	28	258	46	8	19,8986	CASA	
	29	198	0	0	80,9139	LINDERO	
	30	206	50	3	85,4246	LINDERO	
	С	209	23	13	12,4072	ANGULO OBSERVADO	
С	В	0	0	0	4,591	ANGULO OBSERVADO	
	D	201	4	6	8,5169	ANGULO OBSERVADO	
D	С	0	0	0	8,5162	ANGULO OBSERVADO	
	Α	238	9	37	10,227	ANGULO OBSERVADO	
Α	D	0	0	0	9,232	ANGULO OBSERVADO	
	В	292	12	58	23,122	ANGULO OBSERVADO	

CALCULO DE ERROR

Fórmula: 180 (n±2)

n = Numero de deltas + = ∑ Angulo externo - = ∑ Angulo interno

180 (4 + 2) = 1080 180 (4-2) = 360

> Σ 139°10'15" 209°23'13" 201°04'06" 238°09'37" 292°12'58" 1080°0'09"

TOTAL 1080°0'09" ERROR 0°0' 09"

PREDIO No 2

	CARTERA DE CAMPO –	NAVEGADOR GPS		
0	Detalle	E	N	h
1	Λ1	915488	960282	456
2	Poste	915482	960274	457
3	Árbol	915487	960272	457
4	Árbol	915490	960273	457
5	Lindero	915494	960268	457
6	Casa	915498	960267	458
7	Lindero	915504	960263	458
8	Esquina Lindero	915518	960256	458
9	Árbol	915516	960262	458
10	Esquina Casa 1	915509	960268	458
11	Esquina Casa 1	915506	960268	459
12	Esquina Casa 1	915504	960273	459
13	Esquina Casa 1	915510	960273	459
14	Esquina Casa 2	915515	960277	45

ō	Detalle	E	N	h
15	Esquina Casa 2	915518	960281	459
16	Esquina Casa 2	915522	960282	459
17	Esquina Casa 2	915522	960279	459
18	Lindero	915522	960274	460
19	Esquina Lindero	915543	960329	459
20	Esquina Lindero	915517	960339	459
21	Proyección Lindero	915510	960327	459
22	Proyección Lindero	915504	960313	459
23	Proyección Lindero	915495	960330	459
24	Proyección Lindero	915491	960287	460
25	Poste	915501	960284	460

	CARTERA DE CAMPO - ESTACION TOTAL								
Δ	0	AZIMUT			DISTANCIA	OBSERVACION			
44		GRADOS	MINUTOS	SEGUNDOS	(METROS)	OBSERVACION			
А	1	0	0	0	13	NORTE ARBITRARIO - POSTE LINDERO			
	2	294	33	13	27,415	LINDERO			
	3	289	10	33	20,143	ESQUINA CASA			
	4	264	49	44	18,25	ESQUINA CASA			
	5	231	11	9	12,982	VALLA PUBLICITARIA			
	6	237	35	44	41,868	LINDERO			
	7	243	2	29	30,8	ESQUINA CASA			
	В	203	22	59	17,294	ANGULO OBSERVADO			
В	А	0	0	0	17,268	ANGULO OBSERVADO			
	8	256	55	14	32,156	LINDERO			
	9	260	29	28	17,744	ESQUINA CASA			
	10	241	15	7	16,892	ESQUINA CASA			
	11	153	4	13	55,96	LINDERO			

•	· ·		AZIMUT		DISTANCIA	OBSERVACION
Δ	0	GRADOS	MINUTOS	SEGUNDOS	(METROS)	OBSERVACION
	12	121	44	59	47,876	LINDERO
	13	220	37	12	21,9372	LINDERO
	14	241	31	54	22,3083	LINDERO
	15	276	0	0	23,9727	LINDERO
	С	251	34	30	13,7535	ANGULO OBSERVADO
С	В	0	0	0	15,5235	ANGULO OBSERVADO
	А	272	0	23	13,5682	ANGULO OBSERVADO
А	С	0	0	0	25,0864	ANGULO OBSERVADO
	В	173	2	15	17,2940	ANGULO OBSERVADO

CALCULO DE ERROR

Fórmula: 180 (n±2)

n = Numero de deltas

+ = ∑ Angulo externo

- = ∑ Angulo interno

180 (3 + 2) = 900

180 (3 - 2) = 360

∑ 203°22'59"

251°34'30"

272°00'23"

173°02'15"

TOTAL 900°0'07"

ERROR 0°0' 07"

PREDIO No 3

	CARTERA DE CAMPO –NAVEGADOR GPS						
0	Detalle	N	E	h			
1	Λ1	913839	957105	435			
2	Esquina Lindero	913840	957505	435			
3	Esquina Casa	913844	957103	437			
4	Esquina Casa	913842	957099	438			
5	Esquina Casa	913854	957094	438			
6	Esquina Casa	913856	957099	438			
7	Esquina Lindero	913856	957100	439			
8	Esquina Casa	913842	957092	439			
9	Esquina Casa	913841	957090	438			
10	Esquina Casa	913837	957090	439			
11	Esquina Casa	913836	957096	438			
12	Árbol	913831	957092	438			
13	Proyección Lindero	913830	957092	438			
14	Esquina Lindero	913812	957063	438			
15	Árbol	913818	957062	438			
16	Esquina Lindero	938551	957056	439			
17	Cultivo	913854	957070	438			
18	Cultivo	913826	957083	439			
19	Cultivo	913858	957155	440			
20	Esquina Lindero	913865	957150	441			

	CARTERA DE CAMPO - ESTACION TOTAL								
Ф	0		AZIMUT		DISTANCIA	OBSERVACION			
44)	GRADOS	MINUTOS	SEGUNDOS	(METROS)	OBSERVACION			
Α	1	0	0	0	16,366	NORTE ARBITRARIO - ESQUINA CASA			
	2	345	31	14	8,12	ESQUINA CASA			
	3	327	29	20	8,124	ESQUINA CASA			
	4	308	47	1	8,41	ESQUINA CASA			
	5	282	46	19	7,193	ESQUINA CASA			
	6	281	21	50	17,241	ESQUINA CASA			
	7	278	19	18	17,039	ESQUINA CASA			
	8	137	14	20	2,77	LINDERO			
	9	321	17	37	37,29	LINDERO			
	10	22	53	31	13,614	LINDERO			
	11	16	25	48	43,4798	LINDERO			
	12	330	52	12	59,1823	LINDERO			

PREDIO No 4

	CARTERA DE CAMPO –NAV	EGADOR GPS		
0	Detalle	E	N	h
1	Λ1	913331	956101	455
2	Poste De Luz	913337	956093	455
3	Esquina Cabaña	913348	956101	455
4	Esquina Cabaña	913351	956102	456
5	Proyección Lindero	913352	956106	456
6	Esquina Lindero	913328	956113	455
7	Esquina Parqueadero	913321	956085	457
8	Esquina Parqueadero	913319	956081	457
9	Entrada Principal	913315	956079	456
10	Entrada Principal	913311	956077	456
11	Esquina Lindero	913300	956046	457
12	Pradera Esquina	913323	956039	457
13	Esquina Restaurante	913340	956055	458
14	Esquina Restaurante	913347	956074	458
15	Esquina Restaurante	913357	956069	457
16	Esquina Restaurante	913359	956081	458
17	Esquina Restaurante	913371	956072	458
18	Esquina Lago	913370	956072	458
19	Esquina Lago	913380	956095	458
20	Esquina Lago	913352	956100	459
21	Esquina Cabaña	913351	956101	459

0	Detalle	E	N	h
22	Esquina Cabaña	913350	956100	458
23	Esquina Lindero	913349	956100	458
24	Esquina Lago	913342	956078	459
25	Pozo	913342	956095	458
26	Esquina Lago	913360	956070	458
27	Esquina Quiosco	913337	956049	458
28	Esquina Quiosco	913338	956038	458
29	Esquina Quiosco	913346	956043	458
30	Esquina Quiosco	913344	956048	458
31	Esquina Restaurante	913360	956045	458
32	Esquina Casa	913382	956046	458
33	Esquina Casa	913384	956044	458
34	Esquina Casa	913373	956034	457
35	Esquina Casa	913374	956028	458
36	Esquina Caseta	913376	956053	458
37	Esquina Caseta	913384	956051	457
38	Esquina Caseta	913388	956057	457
39	Esquina Caseta	913381	956058	457
40	Árbol	913377	956047	458
41	Árbol	913373	956040	458
42	Esquina Caño	913374	956068	458
43	Esquina Caño	913353	956021	458
44	Esquina Horno	913345	956028	457
45	Esquina Horno	913349	956034	457

0	Detalle	E	N	h
46	Esquina Horno	913358	956024	458
47	Esquina Horno	913357	956025	457
48	Esquina Corral Casa	913389	956032	456
49	Esquina Corral Casa	913395	956047	456
50	Esquina Corral Casa	913397	956048	456
51	Esquina Corral Casa	913396	956049	456
52	Esquina Corral Casa	913401	956046	456
53	Esquina Corral Casa	913404	956044	456
54	Esquina Corral Casa	913408	956044	456
55	Esquina Corral Casa	913404	956030	56
56	Esquina Casa Atrás	913413	956007	456
57	Esquina Casa Atrás	913411	956017	456
58	Esquina Casa Atrás	913423	956013	455
59	Esquina Casa Atrás	913422	956008	455
60	Esquina Casa Atrás	913418	956003	454
61	Esquina Casa Atrás	913416	956002	455
62	Lindero	913403	955999	455

CARTERA DE CAMPO							
Φ	0	AZIMUT GRADOS MINUTOS SEGUNDOS			DISTANCIA (METROS)	OBSERVACION	
Α	1	0	0	0	8,575	NORTE ARBITRARIO - POSTE	
	2	356	0	12	11,108	POSTE	
	3	310	49	50	17,717	ESQUINA CABAÑA	
	4	302	0	38	19,825	ESQUINA CABAÑA	
	5	332	59	27	14,082	LINDERO	
	6	77	22	28	16,57	TECHO PARQUEADERO	
	7	76	31	0	22,599	TECHO PARQUEADERO	
	8	88	25	10	26,136	ENTRADA VEHICULO	
	9	86	23	42	30,568	ENTRADA VEHICULO	
	10	80	23	17	54,05	LINDERO	
	11	74	0	28	55,569	VALLA PUBLICITARIA	
	12	64	57	29	55,978	ARCO CANCHAN DE FUTBOL	
	13	57	27	32	54,215	ARCO CANCHAN DE FUTBOL - CERCA VERDE	
	14	35	21	41	44,582	ESQUINA RESTAURANTE	
	15	12	34	48	31,84	ESQUINA RESTAURANTE	

Ф	O	AZIMUT				000000
		GRADOS	MINUTOS	SEGUNDOS	DISTANCIA (METROS) OBSERVACION	OBSERVACION
	16	3	51	34	45,216	ESQUINA RESTAURANTE
	17	354	49	31	43,243	ESQUINA RESTAURANTE
	18	352	47	33	52,61	ESQUINA RESTAURANTE
	19	351	40	38	49,418	LAGO
	20	328	39	27	51,63	LAGO
	21	312	16	11	24,006	LAGO
	22	308	13	6	22,344	ESQUINA CABAÑA
	23	315	44	49	20,575	ESQUINA CABAÑA
	24	313	28	1	19,051	CERCA VERDE
	25	12	30	6	23,039	LAGO
	26	343	48	59	14,743	POZO ESCEPTICO
	27	0	23	13	41,378	LAGO
	28	354	11	14	42,041	LAGO
	В	59	52	33	61,361	ANGULO OBSERVADO
В	А	0	0	0	61,368	ANGULO OBSERVADO
	29	281	58	51	21,167	LINDERO
	30	57	12	43	17,524	ESQUINA QUIOSCO

ф	0	AZIMUT				
		GRADOS	MINUTOS	SEGUNDOS	DISTANCIA (METROS)	OBSERVACION
	31	78	58	53	19,108	ESQUINA QUIOSCO
	32	71	7	3	27,45	ESQUINA QUIOSCO
	33	56	37	25	26,307	ESQUINA QUIOSCO
	С	99	2	25	49,08	ANGULO OBSERVADO
С	В	0	0	0	49,08	ANGULO OBSERVADO
	34	2	27	53	12,279	ESQUINA CASETA
	35	23	59	57	12,627	ESQUINA CASETA
	36	17	34	33	23,24	ESQUINA CASETA
	37	54	17	10	26,262	ESQUINA COCINA
	38	64	24	33	33,542	ESQUINA COCINA
	39	68	51	48	34,552	ESQUINA COCINA
	40	73	37	45	32,073	PUENTE
	41	80	19	6	30,757	PUENTE
	42	91	1	14	31,071	ESQUINA CASETA
	43	89	16	7	36,169	ESQUINA CASETA
	44	108	16	45	32,74	ESQUINA CASETA
	45	106	53	44	36,616	ESTADERO

A	0	AZIMUT			DISTANCIA (METDOS)	ODCEDVACION
Δ		GRADOS	MINUTOS	SEGUNDOS	DISTANCIA (METROS) OBSERVACION	ORSEKVACION
	46	106	52	15	43,393	ESTADERO
	47	136	49	24	13,414	ESQUINA CASETA
	48	94	36	53	9,305	ESQUINA CASETA
	49	136	18	17	23,202	ESQUINA CASA
	50	148	9	5	30,666	ESQUINA CASA
	51	140	34	1	34,232	ESQUINA CASA
	52	143	46	56	37,525	ESQUINA CASA
	53	212	7	16	47,415	LINDERO
	54	178	13	34	47,424	LINDERO
	55	166	37	5	48,874	LINDERO
	56	110	1	3	81,2917	LINDERO
	57	123	39	12	34,0168	CASA
	D	55	39	12	63,1976	ANGULO OBSERVADO
D	С	0	0	0	63,1972	ANGULO OBSERVADO
	Α	73	51	28	92,5057	ANGULO OBSERVADO
Α	D	0	0	0	92,5058	ANGULO OBSERVADO
	В	74	36	26	61,368	ANGULO OBSERVADO

CALCULO DE ERROR

Fórmula: 180 (n±2)

n = Numero de deltas + = ∑ Angulo externo

- = ∑ Angulo interno

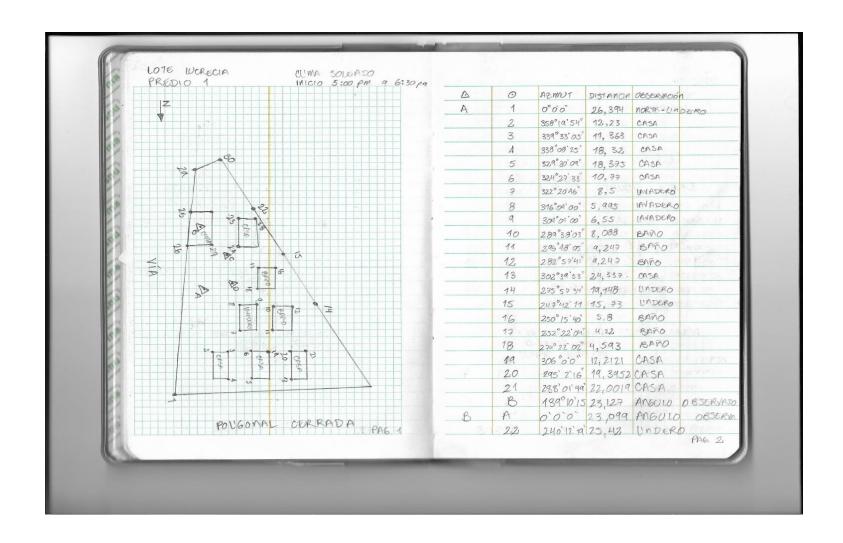
180 (4 + 2) = 1080

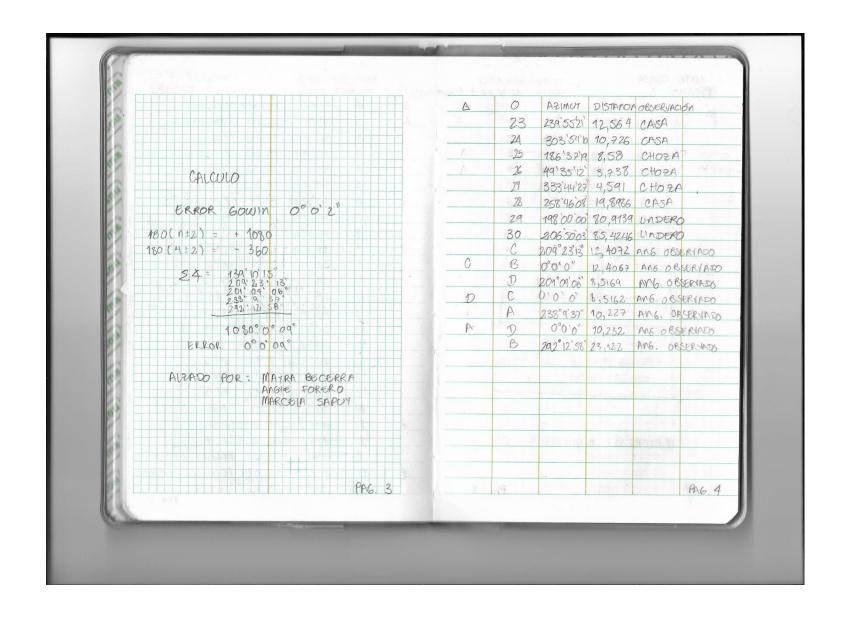
180 (4-2) = 360

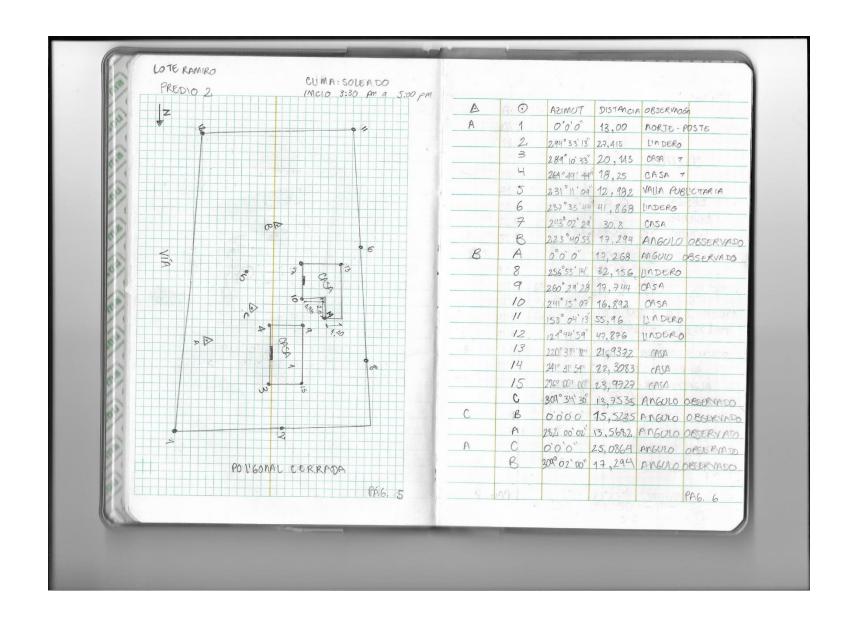
∑ 58°51'33"

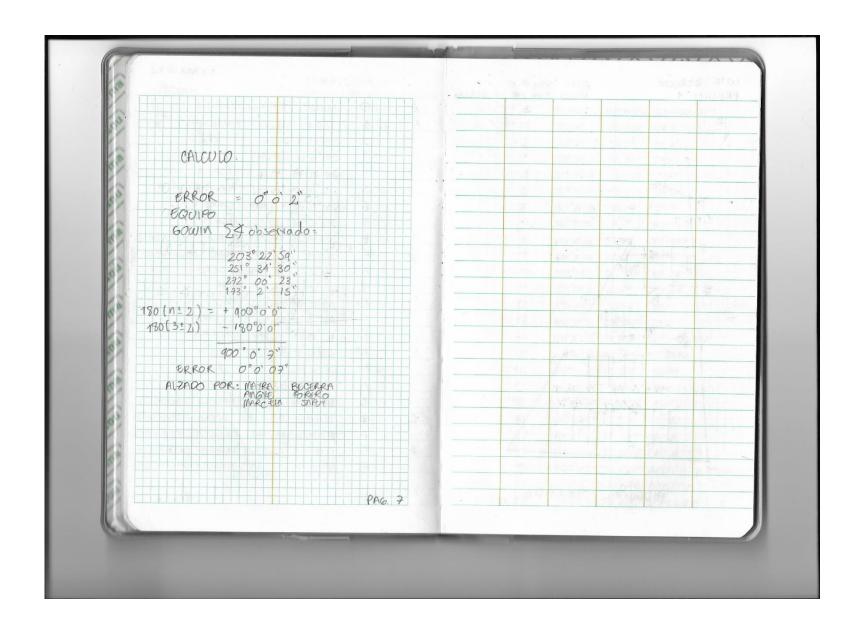
97°01'25"

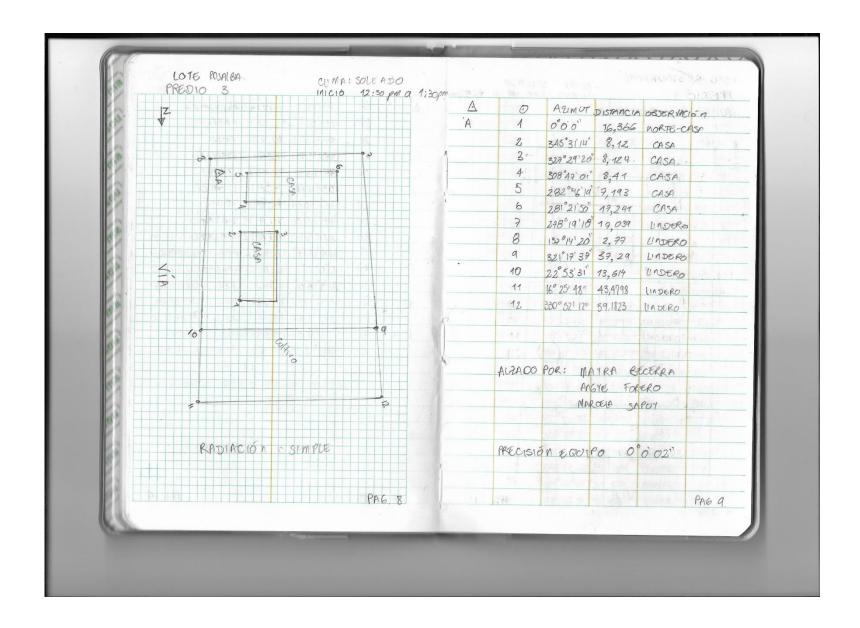
55°39'12"

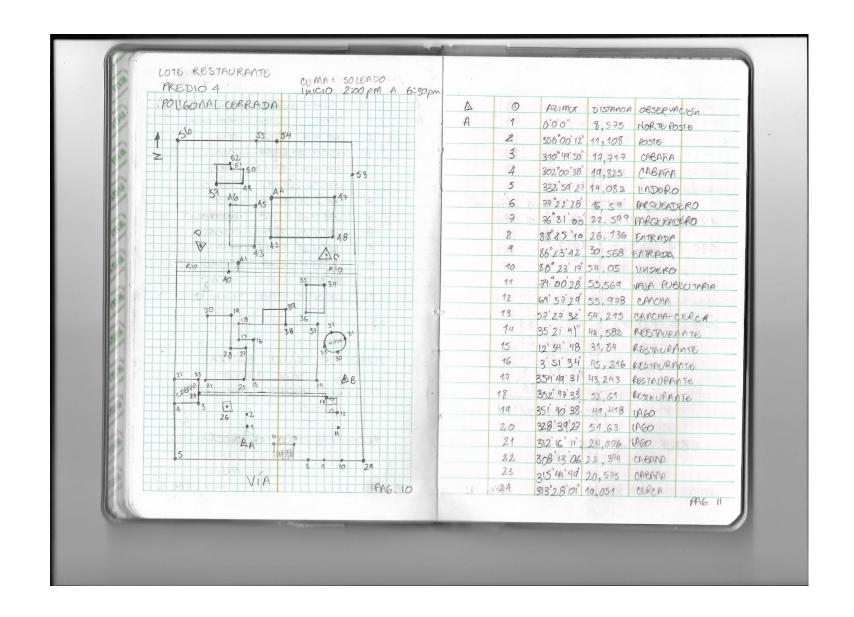

62°51'28"

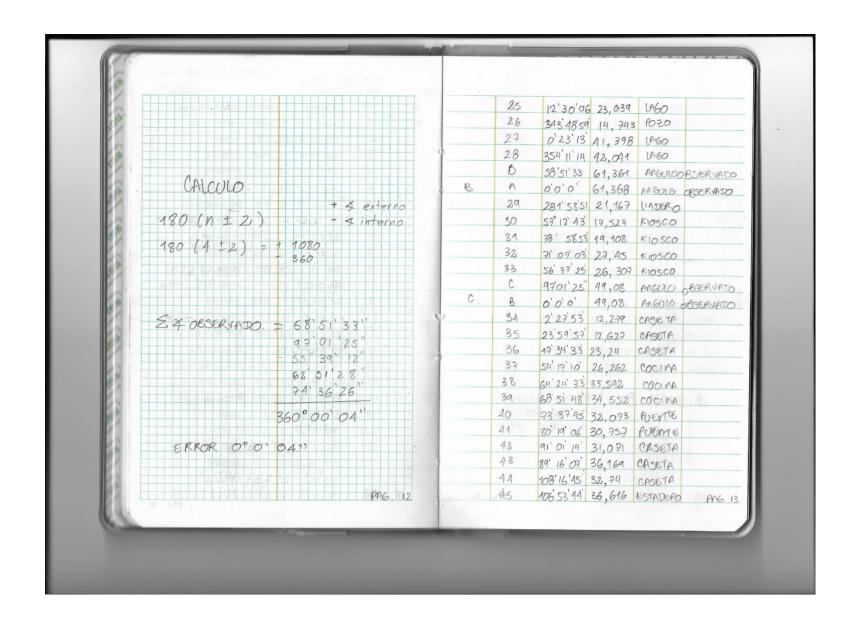

74°36'26"

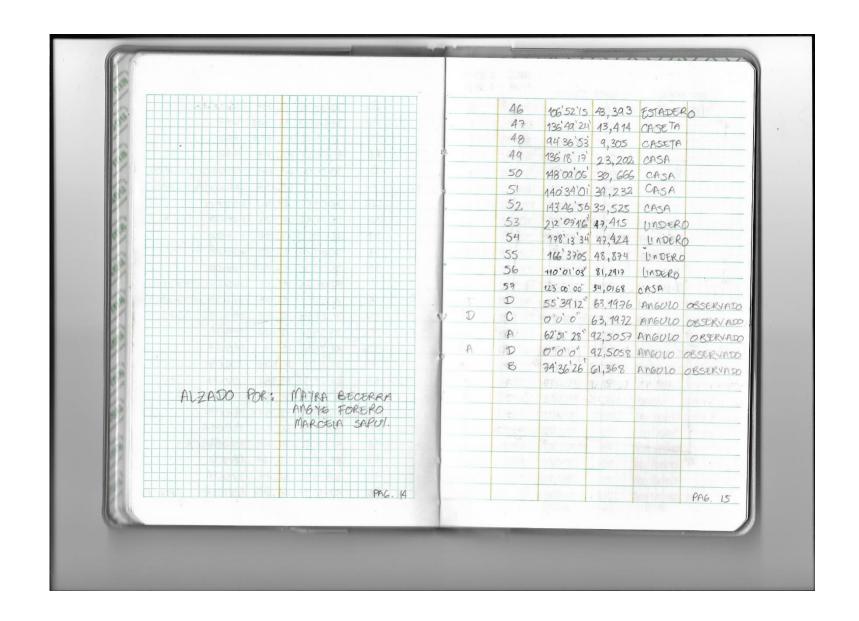

TOTAL 360°0'04"

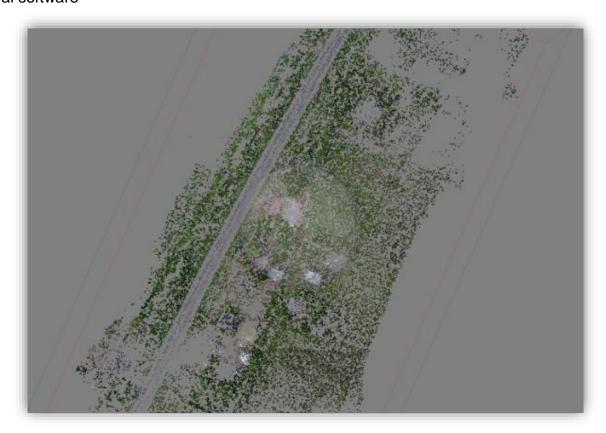

ERROR 0°0' 04"

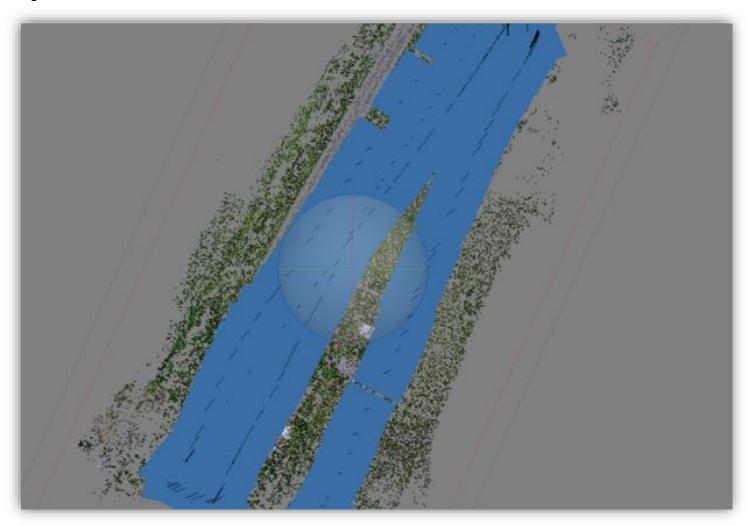

ANEXO C CARTERA DE TRANSITO DE LOS LEVANTAMIENTOS ESTACIÓN TOTAL Y NAVEGADOR GPS





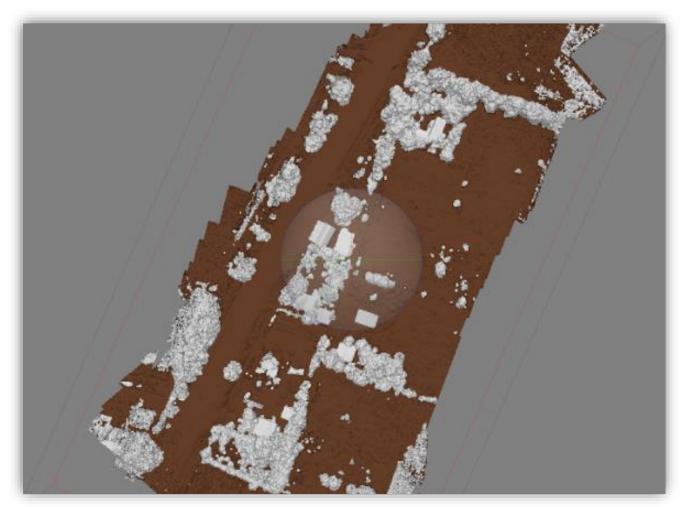




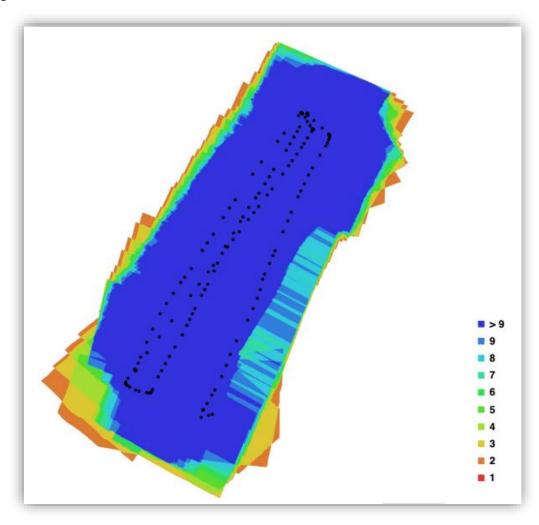


ANEXO D. CORRECCIÓN DE IMÁGENES CAPTURADAS

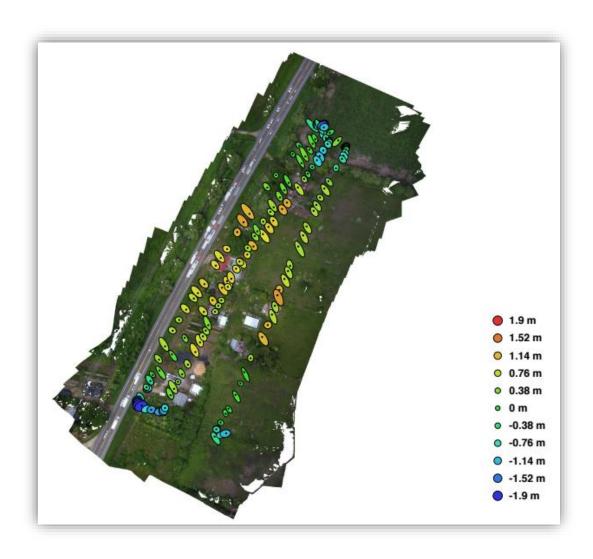
VUELO No 1
Imágenes añadidas al software



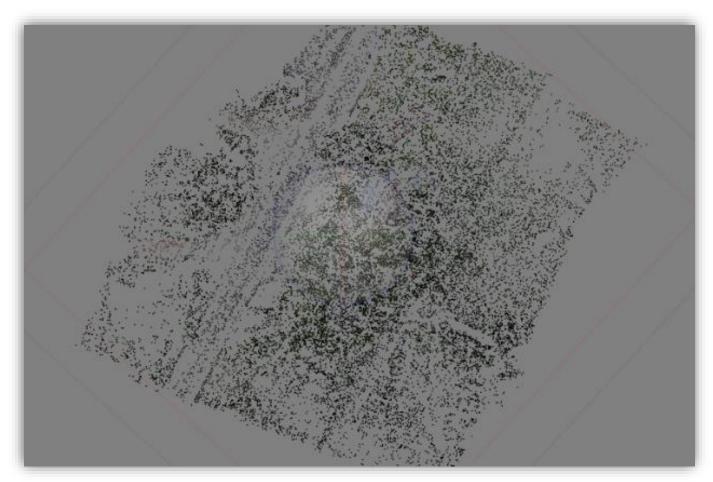
Enlace de imágenes

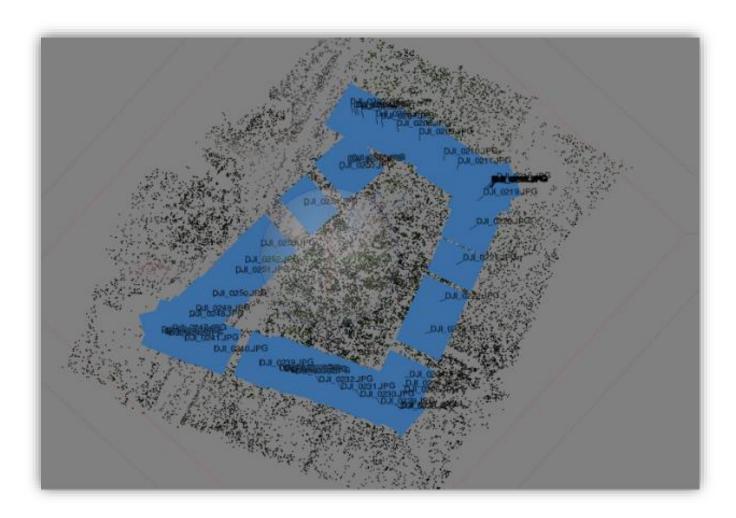

Nube de puntos con superficie moderada y baja

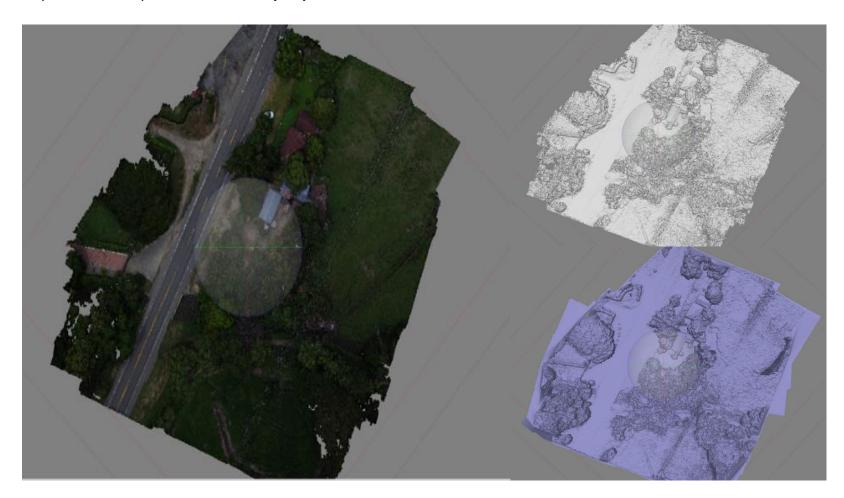
Depuración para terreno natural

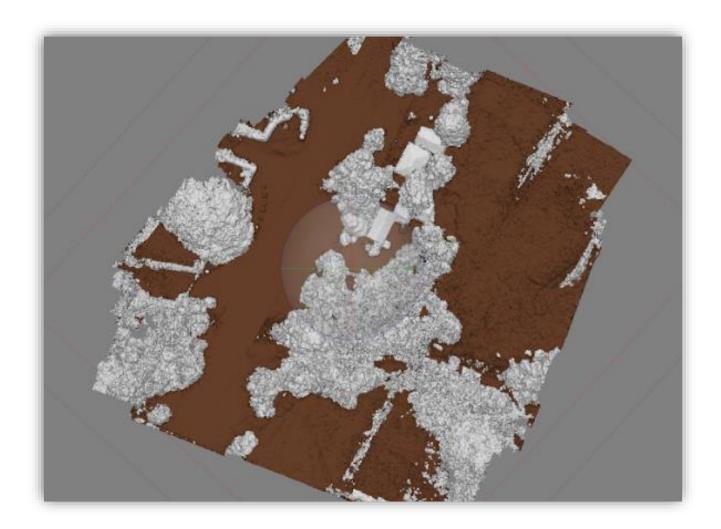


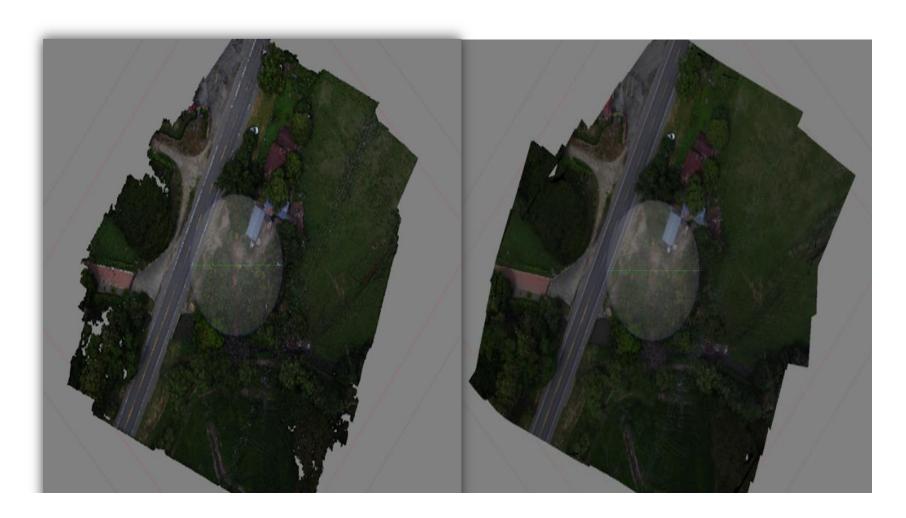
Antes y después de generar una orto foto

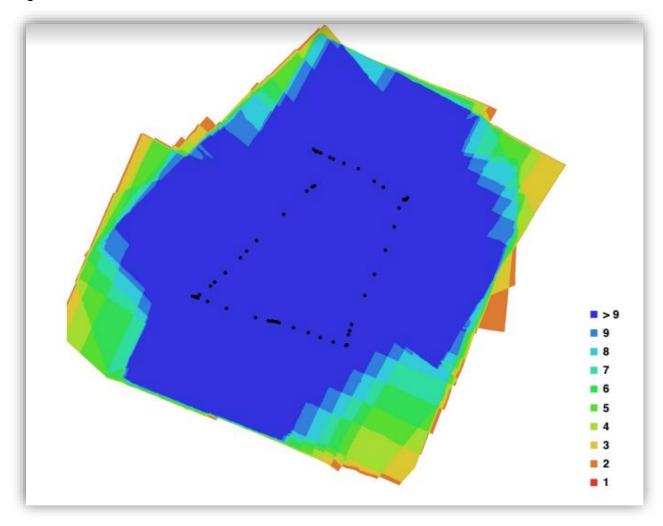

Traslape de las imágenes

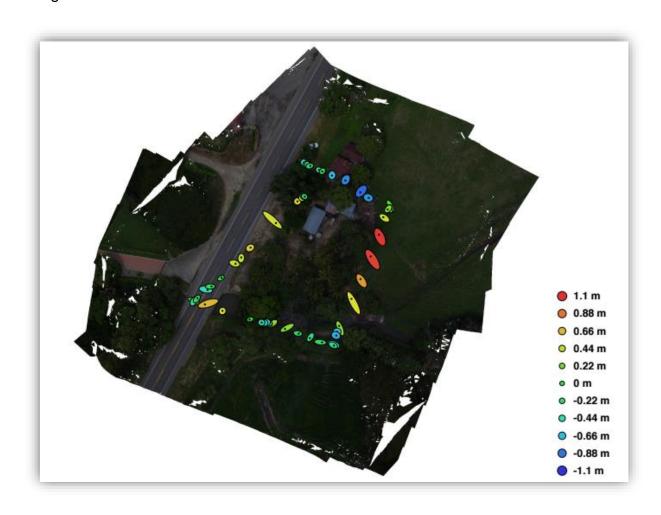

Localización de las imágenes con su error


VUELO No 2
Imágenes añadidas al software


Enlace de imágenes


Nube de puntos con superficie moderada y baja


Depuración para terreno natural


Antes y después de generar una orto foto

Traslape de las imágenes

Localización de las imágenes con su error

ANEXO E. REPORTE DE VUELOS ART